--- license: mit datasets: - hongzhouyu/FineMed-SFT - hongzhouyu/FineMed-DPO language: - en - zh base_model: - meta-llama/Llama-3.1-8B - hongzhouyu/FineMedLM library_name: transformers tags: - medical ---

FineMedLM-o1

GitHub | Paper
# Introduction **FineMedLM-o1** is a specialized medical LLM engineered for advanced medical reasoning. It employs a multi-step reasoning process, iteratively reflecting on and refining its thought process before delivering a final response. For more information, visit our GitHub repository. # Usage You can use FineMedLM-o1 in the same way as `Llama-3.1-8B-Instruct`: ```python from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained("hongzhouyu/FineMedLM-o1") tokenizer = AutoTokenizer.from_pretrained("hongzhouyu/FineMedLM-o1") prompt = "How do the interactions between neuronal activity, gonadal hormones, and neurotrophins influence axon regeneration post-injury, and what are the potential therapeutic implications of this research? Please think step by step." messages = [ {"role": "system", "content": "You are a helpful professional doctor."}, {"role": "user", "content": prompt} ] text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) model_inputs = tokenizer([text], return_tensors="pt") generated_ids = model.generate( model_inputs.input_ids, max_new_tokens=4096 ) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] print(response) ``` FineMedLM-o1 adopts a *slow-thinking* approach, with outputs formatted as: ``` **Thought** [Reasoning process] **Summarization** [Output] ``` # Citation ``` @misc{yu2025finemedlmo1enhancingmedicalreasoning, title={FineMedLM-o1: Enhancing the Medical Reasoning Ability of LLM from Supervised Fine-Tuning to Test-Time Training}, author={Hongzhou Yu and Tianhao Cheng and Ying Cheng and Rui Feng}, year={2025}, eprint={2501.09213}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2501.09213}, } ```