--- library_name: transformers license: apache-2.0 base_model: facebook/dinov2-small-imagenet1k-1-layer tags: - generated_from_trainer metrics: - accuracy model-index: - name: dinov2-small-imagenet1k-1-layer-finetuned-eurosat results: [] --- # dinov2-small-imagenet1k-1-layer-finetuned-eurosat This model is a fine-tuned version of [facebook/dinov2-small-imagenet1k-1-layer](https://huggingface.co/facebook/dinov2-small-imagenet1k-1-layer) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2994 - Accuracy: 0.9212 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.9886 | 1.0 | 26 | 0.8828 | 0.7717 | | 0.645 | 2.0 | 52 | 0.4112 | 0.8859 | | 0.4834 | 3.0 | 78 | 0.2994 | 0.9212 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.20.3