--- license: other language: - en - zh library_name: transformers pipeline_tag: text-generation inference: false tags: - baichuan - llama2 - baichuan2 --- This is the LLaMAfied version of [Baichuan2-7B-Chat](https://huggingface.co/baichuan-inc/Baichuan2-7B-Chat) model by Baichuan Inc. This model is converted with https://github.com/hiyouga/LLaMA-Factory/blob/main/tests/llamafy_baichuan2.py You may use this model for fine-tuning in downstream tasks, we recommend using our efficient fine-tuning toolkit. https://github.com/hiyouga/LLaMA-Factory - **Developed by:** Baichuan Inc. - **Language(s) (NLP):** Chinese/English - **License:** [Baichuan2 License](https://huggingface.co/baichuan-inc/Baichuan2-7B-Chat/resolve/main/Baichuan2%20%E6%A8%A1%E5%9E%8B%E7%A4%BE%E5%8C%BA%E8%AE%B8%E5%8F%AF%E5%8D%8F%E8%AE%AE.pdf) Usage: ```python from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer tokenizer = AutoTokenizer.from_pretrained("hiyouga/Baichuan2-7B-Chat-LLaMAfied", use_fast=False) model = AutoModelForCausalLM.from_pretrained("hiyouga/Baichuan2-7B-Chat-LLaMAfied").cuda() streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) query = "晚上睡不着怎么办" inputs = tokenizer([query], return_tensors="pt") inputs = inputs.to("cuda") generate_ids = model.generate(**inputs, max_new_tokens=256, streamer=streamer) ``` You could also alternatively launch a CLI demo by using the script in [LLaMA-Factory](https://github.com/hiyouga/LLaMA-Factory) ```bash python src/cli_demo.py --template baichuan2 --model_name_or_path hiyouga/Baichuan2-7B-Chat-LLaMAfied ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_hiyouga__Baichuan2-7B-Chat-LLaMAfied) | Metric | Value | |-----------------------|---------------------------| | Avg. | 47.92 | | ARC (25-shot) | 52.47 | | HellaSwag (10-shot) | 74.04 | | MMLU (5-shot) | 53.88 | | TruthfulQA (0-shot) | 48.04 | | Winogrande (5-shot) | 69.14 | | GSM8K (5-shot) | 10.92 | | DROP (3-shot) | 26.94 |