--- license: apache-2.0 datasets: - tatsu-lab/alpaca - sahil2801/CodeAlpaca-20k language: - zh - en library_name: transformers tags: - baichuan - lora --- A bilingual instruction-tuned LoRA model of https://huggingface.co/baichuan-inc/baichuan-7B - Instruction-following datasets used: alpaca, alpaca-zh, codealpaca - Training framework: https://github.com/hiyouga/LLaMA-Efficient-Tuning Please follow the [baichuan-7B License](https://huggingface.co/baichuan-inc/baichuan-7B/resolve/main/baichuan-7B%20%E6%A8%A1%E5%9E%8B%E8%AE%B8%E5%8F%AF%E5%8D%8F%E8%AE%AE.pdf) to use this model. Usage: ```python from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer tokenizer = AutoTokenizer.from_pretrained("hiyouga/baichuan-7b-sft", trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained("hiyouga/baichuan-7b-sft", trust_remote_code=True).cuda() streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) query = "晚上睡不着怎么办" template = "A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions.\nHuman: {}\nAssistant: " inputs = tokenizer([template.format(query)], return_tensors="pt") inputs = inputs.to("cuda") generate_ids = model.generate(**inputs, max_new_tokens=256, streamer=streamer) ``` You could also alternatively launch a CLI demo by using the script in https://github.com/hiyouga/LLaMA-Efficient-Tuning ```bash python src/cli_demo.py --model_name_or_path hiyouga/baichuan-7b-sft ``` --- You could reproduce our results with the following scripts: ```bash CUDA_VISIBLE_DEVICES=0 python src/train_sft.py \ --model_name_or_path baichuan-inc/baichuan-7B \ --do_train \ --dataset alpaca_gpt4_en,alpaca_gpt4_zh,codealpaca \ --finetuning_type lora \ --lora_rank 16 \ --lora_target W_pack,o_proj,gate_proj,down_proj,up_proj \ --output_dir baichuan_lora \ --overwrite_cache \ --per_device_train_batch_size 8 \ --per_device_eval_batch_size 8 \ --gradient_accumulation_steps 8 \ --preprocessing_num_workers 16 \ --lr_scheduler_type cosine \ --logging_steps 10 \ --save_steps 100 \ --eval_steps 100 \ --learning_rate 5e-5 \ --max_grad_norm 0.5 \ --num_train_epochs 2.0 \ --dev_ratio 0.01 \ --evaluation_strategy steps \ --load_best_model_at_end \ --plot_loss \ --fp16 ``` Loss curve on training set: ![train](training_loss.svg) Loss curve on evaluation set: ![eval](eval_loss.svg)