diff --git "a/trainer_log.jsonl" "b/trainer_log.jsonl" --- "a/trainer_log.jsonl" +++ "b/trainer_log.jsonl" @@ -2506,3 +2506,503 @@ {"current_steps": 2506, "total_steps": 3633, "loss": 0.7689, "learning_rate": 8.935856144588532e-06, "epoch": 0.6897405903805133, "percentage": 68.98, "elapsed_time": "7:00:07", "remaining_time": "3:08:56"} {"current_steps": 2507, "total_steps": 3633, "loss": 0.7737, "learning_rate": 8.921304840588578e-06, "epoch": 0.6900158260510563, "percentage": 69.01, "elapsed_time": "7:00:17", "remaining_time": "3:08:46"} {"current_steps": 2508, "total_steps": 3633, "loss": 0.7777, "learning_rate": 8.906761992276893e-06, "epoch": 0.6902910617215992, "percentage": 69.03, "elapsed_time": "7:00:28", "remaining_time": "3:08:36"} +{"current_steps": 2509, "total_steps": 3633, "loss": 0.7964, "learning_rate": 8.89222761075315e-06, "epoch": 0.690566297392142, "percentage": 69.06, "elapsed_time": "7:00:38", "remaining_time": "3:08:26"} +{"current_steps": 2510, "total_steps": 3633, "loss": 0.75, "learning_rate": 8.87770170711055e-06, "epoch": 0.6908415330626849, "percentage": 69.09, "elapsed_time": "7:00:48", "remaining_time": "3:08:16"} +{"current_steps": 2511, "total_steps": 3633, "loss": 0.7402, "learning_rate": 8.863184292435828e-06, "epoch": 0.6911167687332278, "percentage": 69.12, "elapsed_time": "7:00:58", "remaining_time": "3:08:06"} +{"current_steps": 2512, "total_steps": 3633, "loss": 0.7886, "learning_rate": 8.848675377809235e-06, "epoch": 0.6913920044037707, "percentage": 69.14, "elapsed_time": "7:01:08", "remaining_time": "3:07:56"} +{"current_steps": 2513, "total_steps": 3633, "loss": 0.7951, "learning_rate": 8.834174974304526e-06, "epoch": 0.6916672400743137, "percentage": 69.17, "elapsed_time": "7:01:18", "remaining_time": "3:07:46"} +{"current_steps": 2514, "total_steps": 3633, "loss": 0.7842, "learning_rate": 8.819683092988978e-06, "epoch": 0.6919424757448566, "percentage": 69.2, "elapsed_time": "7:01:28", "remaining_time": "3:07:36"} +{"current_steps": 2515, "total_steps": 3633, "loss": 0.7856, "learning_rate": 8.805199744923356e-06, "epoch": 0.6922177114153995, "percentage": 69.23, "elapsed_time": "7:01:38", "remaining_time": "3:07:26"} +{"current_steps": 2516, "total_steps": 3633, "loss": 0.7728, "learning_rate": 8.790724941161904e-06, "epoch": 0.6924929470859423, "percentage": 69.25, "elapsed_time": "7:01:48", "remaining_time": "3:07:15"} +{"current_steps": 2517, "total_steps": 3633, "loss": 0.7898, "learning_rate": 8.776258692752355e-06, "epoch": 0.6927681827564852, "percentage": 69.28, "elapsed_time": "7:01:58", "remaining_time": "3:07:05"} +{"current_steps": 2518, "total_steps": 3633, "loss": 0.7655, "learning_rate": 8.761801010735906e-06, "epoch": 0.6930434184270281, "percentage": 69.31, "elapsed_time": "7:02:08", "remaining_time": "3:06:55"} +{"current_steps": 2519, "total_steps": 3633, "loss": 0.7716, "learning_rate": 8.747351906147225e-06, "epoch": 0.6933186540975711, "percentage": 69.34, "elapsed_time": "7:02:18", "remaining_time": "3:06:45"} +{"current_steps": 2520, "total_steps": 3633, "loss": 0.7424, "learning_rate": 8.73291139001443e-06, "epoch": 0.693593889768114, "percentage": 69.36, "elapsed_time": "7:02:28", "remaining_time": "3:06:35"} +{"current_steps": 2521, "total_steps": 3633, "loss": 0.7848, "learning_rate": 8.718479473359067e-06, "epoch": 0.6938691254386569, "percentage": 69.39, "elapsed_time": "7:02:38", "remaining_time": "3:06:25"} +{"current_steps": 2522, "total_steps": 3633, "loss": 0.7934, "learning_rate": 8.704056167196148e-06, "epoch": 0.6941443611091997, "percentage": 69.42, "elapsed_time": "7:02:48", "remaining_time": "3:06:15"} +{"current_steps": 2523, "total_steps": 3633, "loss": 0.7637, "learning_rate": 8.689641482534083e-06, "epoch": 0.6944195967797426, "percentage": 69.45, "elapsed_time": "7:02:58", "remaining_time": "3:06:05"} +{"current_steps": 2524, "total_steps": 3633, "loss": 0.7738, "learning_rate": 8.675235430374722e-06, "epoch": 0.6946948324502855, "percentage": 69.47, "elapsed_time": "7:03:08", "remaining_time": "3:05:55"} +{"current_steps": 2525, "total_steps": 3633, "loss": 0.807, "learning_rate": 8.660838021713323e-06, "epoch": 0.6949700681208285, "percentage": 69.5, "elapsed_time": "7:03:18", "remaining_time": "3:05:45"} +{"current_steps": 2526, "total_steps": 3633, "loss": 0.7752, "learning_rate": 8.646449267538544e-06, "epoch": 0.6952453037913714, "percentage": 69.53, "elapsed_time": "7:03:28", "remaining_time": "3:05:35"} +{"current_steps": 2527, "total_steps": 3633, "loss": 0.7415, "learning_rate": 8.632069178832445e-06, "epoch": 0.6955205394619143, "percentage": 69.56, "elapsed_time": "7:03:38", "remaining_time": "3:05:25"} +{"current_steps": 2528, "total_steps": 3633, "loss": 0.7796, "learning_rate": 8.617697766570449e-06, "epoch": 0.6957957751324572, "percentage": 69.58, "elapsed_time": "7:03:48", "remaining_time": "3:05:15"} +{"current_steps": 2529, "total_steps": 3633, "loss": 0.7672, "learning_rate": 8.603335041721386e-06, "epoch": 0.696071010803, "percentage": 69.61, "elapsed_time": "7:03:58", "remaining_time": "3:05:04"} +{"current_steps": 2530, "total_steps": 3633, "loss": 0.7847, "learning_rate": 8.588981015247443e-06, "epoch": 0.6963462464735429, "percentage": 69.64, "elapsed_time": "7:04:08", "remaining_time": "3:04:54"} +{"current_steps": 2531, "total_steps": 3633, "loss": 0.7649, "learning_rate": 8.57463569810415e-06, "epoch": 0.6966214821440859, "percentage": 69.67, "elapsed_time": "7:04:18", "remaining_time": "3:04:44"} +{"current_steps": 2532, "total_steps": 3633, "loss": 0.7673, "learning_rate": 8.560299101240436e-06, "epoch": 0.6968967178146288, "percentage": 69.69, "elapsed_time": "7:04:28", "remaining_time": "3:04:34"} +{"current_steps": 2533, "total_steps": 3633, "loss": 0.7686, "learning_rate": 8.545971235598524e-06, "epoch": 0.6971719534851717, "percentage": 69.72, "elapsed_time": "7:04:39", "remaining_time": "3:04:24"} +{"current_steps": 2534, "total_steps": 3633, "loss": 0.7628, "learning_rate": 8.531652112114011e-06, "epoch": 0.6974471891557146, "percentage": 69.75, "elapsed_time": "7:04:49", "remaining_time": "3:04:14"} +{"current_steps": 2535, "total_steps": 3633, "loss": 0.7756, "learning_rate": 8.517341741715787e-06, "epoch": 0.6977224248262575, "percentage": 69.78, "elapsed_time": "7:04:59", "remaining_time": "3:04:04"} +{"current_steps": 2536, "total_steps": 3633, "loss": 0.7779, "learning_rate": 8.503040135326088e-06, "epoch": 0.6979976604968003, "percentage": 69.8, "elapsed_time": "7:05:09", "remaining_time": "3:03:54"} +{"current_steps": 2537, "total_steps": 3633, "loss": 0.7883, "learning_rate": 8.488747303860463e-06, "epoch": 0.6982728961673433, "percentage": 69.83, "elapsed_time": "7:05:19", "remaining_time": "3:03:44"} +{"current_steps": 2538, "total_steps": 3633, "loss": 0.7853, "learning_rate": 8.474463258227727e-06, "epoch": 0.6985481318378862, "percentage": 69.86, "elapsed_time": "7:05:29", "remaining_time": "3:03:34"} +{"current_steps": 2539, "total_steps": 3633, "loss": 0.7664, "learning_rate": 8.460188009330049e-06, "epoch": 0.6988233675084291, "percentage": 69.89, "elapsed_time": "7:05:39", "remaining_time": "3:03:24"} +{"current_steps": 2540, "total_steps": 3633, "loss": 0.774, "learning_rate": 8.445921568062826e-06, "epoch": 0.699098603178972, "percentage": 69.91, "elapsed_time": "7:05:49", "remaining_time": "3:03:14"} +{"current_steps": 2541, "total_steps": 3633, "loss": 0.7656, "learning_rate": 8.431663945314766e-06, "epoch": 0.6993738388495149, "percentage": 69.94, "elapsed_time": "7:05:59", "remaining_time": "3:03:04"} +{"current_steps": 2542, "total_steps": 3633, "loss": 0.7827, "learning_rate": 8.417415151967842e-06, "epoch": 0.6996490745200578, "percentage": 69.97, "elapsed_time": "7:06:09", "remaining_time": "3:02:54"} +{"current_steps": 2543, "total_steps": 3633, "loss": 0.7704, "learning_rate": 8.403175198897276e-06, "epoch": 0.6999243101906008, "percentage": 70.0, "elapsed_time": "7:06:19", "remaining_time": "3:02:44"} +{"current_steps": 2544, "total_steps": 3633, "loss": 0.7794, "learning_rate": 8.388944096971556e-06, "epoch": 0.7001995458611436, "percentage": 70.02, "elapsed_time": "7:06:29", "remaining_time": "3:02:34"} +{"current_steps": 2545, "total_steps": 3633, "loss": 0.8121, "learning_rate": 8.374721857052395e-06, "epoch": 0.7004747815316865, "percentage": 70.05, "elapsed_time": "7:06:39", "remaining_time": "3:02:24"} +{"current_steps": 2546, "total_steps": 3633, "loss": 0.7765, "learning_rate": 8.360508489994781e-06, "epoch": 0.7007500172022294, "percentage": 70.08, "elapsed_time": "7:06:49", "remaining_time": "3:02:13"} +{"current_steps": 2547, "total_steps": 3633, "loss": 0.7874, "learning_rate": 8.346304006646884e-06, "epoch": 0.7010252528727723, "percentage": 70.11, "elapsed_time": "7:06:59", "remaining_time": "3:02:03"} +{"current_steps": 2548, "total_steps": 3633, "loss": 0.7603, "learning_rate": 8.33210841785012e-06, "epoch": 0.7013004885433152, "percentage": 70.13, "elapsed_time": "7:07:09", "remaining_time": "3:01:53"} +{"current_steps": 2549, "total_steps": 3633, "loss": 0.7765, "learning_rate": 8.317921734439122e-06, "epoch": 0.7015757242138582, "percentage": 70.16, "elapsed_time": "7:07:19", "remaining_time": "3:01:43"} +{"current_steps": 2550, "total_steps": 3633, "loss": 0.7983, "learning_rate": 8.3037439672417e-06, "epoch": 0.701850959884401, "percentage": 70.19, "elapsed_time": "7:07:29", "remaining_time": "3:01:33"} +{"current_steps": 2551, "total_steps": 3633, "loss": 0.7741, "learning_rate": 8.289575127078877e-06, "epoch": 0.7021261955549439, "percentage": 70.22, "elapsed_time": "7:07:40", "remaining_time": "3:01:23"} +{"current_steps": 2552, "total_steps": 3633, "loss": 0.8043, "learning_rate": 8.275415224764871e-06, "epoch": 0.7024014312254868, "percentage": 70.24, "elapsed_time": "7:07:50", "remaining_time": "3:01:13"} +{"current_steps": 2553, "total_steps": 3633, "loss": 0.7568, "learning_rate": 8.261264271107043e-06, "epoch": 0.7026766668960297, "percentage": 70.27, "elapsed_time": "7:08:00", "remaining_time": "3:01:03"} +{"current_steps": 2554, "total_steps": 3633, "loss": 0.7731, "learning_rate": 8.247122276905976e-06, "epoch": 0.7029519025665726, "percentage": 70.3, "elapsed_time": "7:08:10", "remaining_time": "3:00:53"} +{"current_steps": 2555, "total_steps": 3633, "loss": 0.7767, "learning_rate": 8.232989252955369e-06, "epoch": 0.7032271382371156, "percentage": 70.33, "elapsed_time": "7:08:20", "remaining_time": "3:00:43"} +{"current_steps": 2556, "total_steps": 3633, "loss": 0.7646, "learning_rate": 8.2188652100421e-06, "epoch": 0.7035023739076585, "percentage": 70.36, "elapsed_time": "7:08:30", "remaining_time": "3:00:33"} +{"current_steps": 2557, "total_steps": 3633, "loss": 0.7736, "learning_rate": 8.204750158946173e-06, "epoch": 0.7037776095782013, "percentage": 70.38, "elapsed_time": "7:08:40", "remaining_time": "3:00:23"} +{"current_steps": 2558, "total_steps": 3633, "loss": 0.7832, "learning_rate": 8.190644110440748e-06, "epoch": 0.7040528452487442, "percentage": 70.41, "elapsed_time": "7:08:50", "remaining_time": "3:00:13"} +{"current_steps": 2559, "total_steps": 3633, "loss": 0.7766, "learning_rate": 8.176547075292116e-06, "epoch": 0.7043280809192871, "percentage": 70.44, "elapsed_time": "7:09:00", "remaining_time": "3:00:03"} +{"current_steps": 2560, "total_steps": 3633, "loss": 0.7971, "learning_rate": 8.162459064259653e-06, "epoch": 0.70460331658983, "percentage": 70.47, "elapsed_time": "7:09:10", "remaining_time": "2:59:52"} +{"current_steps": 2561, "total_steps": 3633, "loss": 0.7778, "learning_rate": 8.148380088095904e-06, "epoch": 0.704878552260373, "percentage": 70.49, "elapsed_time": "7:09:20", "remaining_time": "2:59:42"} +{"current_steps": 2562, "total_steps": 3633, "loss": 0.755, "learning_rate": 8.134310157546466e-06, "epoch": 0.7051537879309159, "percentage": 70.52, "elapsed_time": "7:09:30", "remaining_time": "2:59:32"} +{"current_steps": 2563, "total_steps": 3633, "loss": 0.7702, "learning_rate": 8.120249283350061e-06, "epoch": 0.7054290236014588, "percentage": 70.55, "elapsed_time": "7:09:40", "remaining_time": "2:59:22"} +{"current_steps": 2564, "total_steps": 3633, "loss": 0.7756, "learning_rate": 8.1061974762385e-06, "epoch": 0.7057042592720016, "percentage": 70.58, "elapsed_time": "7:09:50", "remaining_time": "2:59:12"} +{"current_steps": 2565, "total_steps": 3633, "loss": 0.7947, "learning_rate": 8.09215474693665e-06, "epoch": 0.7059794949425445, "percentage": 70.6, "elapsed_time": "7:10:00", "remaining_time": "2:59:02"} +{"current_steps": 2566, "total_steps": 3633, "loss": 0.7981, "learning_rate": 8.078121106162475e-06, "epoch": 0.7062547306130874, "percentage": 70.63, "elapsed_time": "7:10:10", "remaining_time": "2:58:52"} +{"current_steps": 2567, "total_steps": 3633, "loss": 0.7747, "learning_rate": 8.064096564626977e-06, "epoch": 0.7065299662836304, "percentage": 70.66, "elapsed_time": "7:10:20", "remaining_time": "2:58:42"} +{"current_steps": 2568, "total_steps": 3633, "loss": 0.789, "learning_rate": 8.050081133034247e-06, "epoch": 0.7068052019541733, "percentage": 70.69, "elapsed_time": "7:10:30", "remaining_time": "2:58:32"} +{"current_steps": 2569, "total_steps": 3633, "loss": 0.7775, "learning_rate": 8.036074822081401e-06, "epoch": 0.7070804376247162, "percentage": 70.71, "elapsed_time": "7:10:40", "remaining_time": "2:58:22"} +{"current_steps": 2570, "total_steps": 3633, "loss": 0.7856, "learning_rate": 8.022077642458588e-06, "epoch": 0.7073556732952591, "percentage": 70.74, "elapsed_time": "7:10:50", "remaining_time": "2:58:12"} +{"current_steps": 2571, "total_steps": 3633, "loss": 0.7365, "learning_rate": 8.008089604849008e-06, "epoch": 0.7076309089658019, "percentage": 70.77, "elapsed_time": "7:11:00", "remaining_time": "2:58:02"} +{"current_steps": 2572, "total_steps": 3633, "loss": 0.7757, "learning_rate": 7.994110719928856e-06, "epoch": 0.7079061446363448, "percentage": 70.8, "elapsed_time": "7:11:10", "remaining_time": "2:57:52"} +{"current_steps": 2573, "total_steps": 3633, "loss": 0.7599, "learning_rate": 7.980140998367365e-06, "epoch": 0.7081813803068878, "percentage": 70.82, "elapsed_time": "7:11:20", "remaining_time": "2:57:42"} +{"current_steps": 2574, "total_steps": 3633, "loss": 0.8186, "learning_rate": 7.966180450826768e-06, "epoch": 0.7084566159774307, "percentage": 70.85, "elapsed_time": "7:11:30", "remaining_time": "2:57:32"} +{"current_steps": 2575, "total_steps": 3633, "loss": 0.7776, "learning_rate": 7.952229087962296e-06, "epoch": 0.7087318516479736, "percentage": 70.88, "elapsed_time": "7:11:41", "remaining_time": "2:57:22"} +{"current_steps": 2576, "total_steps": 3633, "loss": 0.7644, "learning_rate": 7.938286920422169e-06, "epoch": 0.7090070873185165, "percentage": 70.91, "elapsed_time": "7:11:51", "remaining_time": "2:57:12"} +{"current_steps": 2577, "total_steps": 3633, "loss": 0.7653, "learning_rate": 7.92435395884758e-06, "epoch": 0.7092823229890594, "percentage": 70.93, "elapsed_time": "7:12:01", "remaining_time": "2:57:01"} +{"current_steps": 2578, "total_steps": 3633, "loss": 0.7609, "learning_rate": 7.910430213872709e-06, "epoch": 0.7095575586596022, "percentage": 70.96, "elapsed_time": "7:12:11", "remaining_time": "2:56:51"} +{"current_steps": 2579, "total_steps": 3633, "loss": 0.7726, "learning_rate": 7.896515696124703e-06, "epoch": 0.7098327943301452, "percentage": 70.99, "elapsed_time": "7:12:21", "remaining_time": "2:56:41"} +{"current_steps": 2580, "total_steps": 3633, "loss": 0.8013, "learning_rate": 7.882610416223644e-06, "epoch": 0.7101080300006881, "percentage": 71.02, "elapsed_time": "7:12:31", "remaining_time": "2:56:31"} +{"current_steps": 2581, "total_steps": 3633, "loss": 0.7775, "learning_rate": 7.868714384782588e-06, "epoch": 0.710383265671231, "percentage": 71.04, "elapsed_time": "7:12:41", "remaining_time": "2:56:21"} +{"current_steps": 2582, "total_steps": 3633, "loss": 0.797, "learning_rate": 7.854827612407521e-06, "epoch": 0.7106585013417739, "percentage": 71.07, "elapsed_time": "7:12:51", "remaining_time": "2:56:11"} +{"current_steps": 2583, "total_steps": 3633, "loss": 0.7888, "learning_rate": 7.840950109697373e-06, "epoch": 0.7109337370123168, "percentage": 71.1, "elapsed_time": "7:13:01", "remaining_time": "2:56:01"} +{"current_steps": 2584, "total_steps": 3633, "loss": 0.7741, "learning_rate": 7.82708188724398e-06, "epoch": 0.7112089726828597, "percentage": 71.13, "elapsed_time": "7:13:11", "remaining_time": "2:55:51"} +{"current_steps": 2585, "total_steps": 3633, "loss": 0.7652, "learning_rate": 7.813222955632107e-06, "epoch": 0.7114842083534026, "percentage": 71.15, "elapsed_time": "7:13:21", "remaining_time": "2:55:41"} +{"current_steps": 2586, "total_steps": 3633, "loss": 0.7905, "learning_rate": 7.799373325439435e-06, "epoch": 0.7117594440239455, "percentage": 71.18, "elapsed_time": "7:13:31", "remaining_time": "2:55:31"} +{"current_steps": 2587, "total_steps": 3633, "loss": 0.7688, "learning_rate": 7.785533007236521e-06, "epoch": 0.7120346796944884, "percentage": 71.21, "elapsed_time": "7:13:41", "remaining_time": "2:55:21"} +{"current_steps": 2588, "total_steps": 3633, "loss": 0.7949, "learning_rate": 7.77170201158684e-06, "epoch": 0.7123099153650313, "percentage": 71.24, "elapsed_time": "7:13:51", "remaining_time": "2:55:11"} +{"current_steps": 2589, "total_steps": 3633, "loss": 0.7845, "learning_rate": 7.757880349046742e-06, "epoch": 0.7125851510355742, "percentage": 71.26, "elapsed_time": "7:14:01", "remaining_time": "2:55:00"} +{"current_steps": 2590, "total_steps": 3633, "loss": 0.7618, "learning_rate": 7.744068030165454e-06, "epoch": 0.7128603867061171, "percentage": 71.29, "elapsed_time": "7:14:11", "remaining_time": "2:54:50"} +{"current_steps": 2591, "total_steps": 3633, "loss": 0.8043, "learning_rate": 7.730265065485082e-06, "epoch": 0.7131356223766601, "percentage": 71.32, "elapsed_time": "7:14:21", "remaining_time": "2:54:40"} +{"current_steps": 2592, "total_steps": 3633, "loss": 0.7771, "learning_rate": 7.71647146554056e-06, "epoch": 0.713410858047203, "percentage": 71.35, "elapsed_time": "7:14:31", "remaining_time": "2:54:30"} +{"current_steps": 2593, "total_steps": 3633, "loss": 0.7834, "learning_rate": 7.702687240859717e-06, "epoch": 0.7136860937177458, "percentage": 71.37, "elapsed_time": "7:14:41", "remaining_time": "2:54:20"} +{"current_steps": 2594, "total_steps": 3633, "loss": 0.758, "learning_rate": 7.68891240196319e-06, "epoch": 0.7139613293882887, "percentage": 71.4, "elapsed_time": "7:14:51", "remaining_time": "2:54:10"} +{"current_steps": 2595, "total_steps": 3633, "loss": 0.7623, "learning_rate": 7.675146959364473e-06, "epoch": 0.7142365650588316, "percentage": 71.43, "elapsed_time": "7:15:01", "remaining_time": "2:54:00"} +{"current_steps": 2596, "total_steps": 3633, "loss": 0.7607, "learning_rate": 7.661390923569889e-06, "epoch": 0.7145118007293745, "percentage": 71.46, "elapsed_time": "7:15:11", "remaining_time": "2:53:50"} +{"current_steps": 2597, "total_steps": 3633, "loss": 0.7899, "learning_rate": 7.647644305078572e-06, "epoch": 0.7147870363999175, "percentage": 71.48, "elapsed_time": "7:15:21", "remaining_time": "2:53:40"} +{"current_steps": 2598, "total_steps": 3633, "loss": 0.7615, "learning_rate": 7.63390711438248e-06, "epoch": 0.7150622720704604, "percentage": 71.51, "elapsed_time": "7:15:31", "remaining_time": "2:53:30"} +{"current_steps": 2599, "total_steps": 3633, "loss": 0.7916, "learning_rate": 7.620179361966356e-06, "epoch": 0.7153375077410032, "percentage": 71.54, "elapsed_time": "7:15:41", "remaining_time": "2:53:20"} +{"current_steps": 2600, "total_steps": 3633, "loss": 0.7608, "learning_rate": 7.606461058307755e-06, "epoch": 0.7156127434115461, "percentage": 71.57, "elapsed_time": "7:15:51", "remaining_time": "2:53:10"} +{"current_steps": 2601, "total_steps": 3633, "loss": 0.7643, "learning_rate": 7.592752213877026e-06, "epoch": 0.715887979082089, "percentage": 71.59, "elapsed_time": "7:16:02", "remaining_time": "2:53:00"} +{"current_steps": 2602, "total_steps": 3633, "loss": 0.7975, "learning_rate": 7.579052839137273e-06, "epoch": 0.7161632147526319, "percentage": 71.62, "elapsed_time": "7:16:12", "remaining_time": "2:52:50"} +{"current_steps": 2603, "total_steps": 3633, "loss": 0.7565, "learning_rate": 7.565362944544396e-06, "epoch": 0.7164384504231749, "percentage": 71.65, "elapsed_time": "7:16:22", "remaining_time": "2:52:40"} +{"current_steps": 2604, "total_steps": 3633, "loss": 0.7661, "learning_rate": 7.551682540547054e-06, "epoch": 0.7167136860937178, "percentage": 71.68, "elapsed_time": "7:16:32", "remaining_time": "2:52:30"} +{"current_steps": 2605, "total_steps": 3633, "loss": 0.7691, "learning_rate": 7.538011637586658e-06, "epoch": 0.7169889217642607, "percentage": 71.7, "elapsed_time": "7:16:42", "remaining_time": "2:52:20"} +{"current_steps": 2606, "total_steps": 3633, "loss": 0.7616, "learning_rate": 7.524350246097374e-06, "epoch": 0.7172641574348035, "percentage": 71.73, "elapsed_time": "7:16:52", "remaining_time": "2:52:10"} +{"current_steps": 2607, "total_steps": 3633, "loss": 0.7753, "learning_rate": 7.510698376506091e-06, "epoch": 0.7175393931053464, "percentage": 71.76, "elapsed_time": "7:17:02", "remaining_time": "2:52:00"} +{"current_steps": 2608, "total_steps": 3633, "loss": 0.7764, "learning_rate": 7.497056039232462e-06, "epoch": 0.7178146287758893, "percentage": 71.79, "elapsed_time": "7:17:12", "remaining_time": "2:51:49"} +{"current_steps": 2609, "total_steps": 3633, "loss": 0.8078, "learning_rate": 7.483423244688828e-06, "epoch": 0.7180898644464323, "percentage": 71.81, "elapsed_time": "7:17:22", "remaining_time": "2:51:39"} +{"current_steps": 2610, "total_steps": 3633, "loss": 0.765, "learning_rate": 7.46980000328027e-06, "epoch": 0.7183651001169752, "percentage": 71.84, "elapsed_time": "7:17:32", "remaining_time": "2:51:29"} +{"current_steps": 2611, "total_steps": 3633, "loss": 0.7808, "learning_rate": 7.456186325404575e-06, "epoch": 0.7186403357875181, "percentage": 71.87, "elapsed_time": "7:17:42", "remaining_time": "2:51:19"} +{"current_steps": 2612, "total_steps": 3633, "loss": 0.7801, "learning_rate": 7.44258222145223e-06, "epoch": 0.718915571458061, "percentage": 71.9, "elapsed_time": "7:17:52", "remaining_time": "2:51:09"} +{"current_steps": 2613, "total_steps": 3633, "loss": 0.774, "learning_rate": 7.428987701806416e-06, "epoch": 0.7191908071286038, "percentage": 71.92, "elapsed_time": "7:18:02", "remaining_time": "2:50:59"} +{"current_steps": 2614, "total_steps": 3633, "loss": 0.7782, "learning_rate": 7.415402776842982e-06, "epoch": 0.7194660427991467, "percentage": 71.95, "elapsed_time": "7:18:12", "remaining_time": "2:50:49"} +{"current_steps": 2615, "total_steps": 3633, "loss": 0.7948, "learning_rate": 7.401827456930477e-06, "epoch": 0.7197412784696897, "percentage": 71.98, "elapsed_time": "7:18:22", "remaining_time": "2:50:39"} +{"current_steps": 2616, "total_steps": 3633, "loss": 0.7868, "learning_rate": 7.388261752430115e-06, "epoch": 0.7200165141402326, "percentage": 72.01, "elapsed_time": "7:18:32", "remaining_time": "2:50:29"} +{"current_steps": 2617, "total_steps": 3633, "loss": 0.8008, "learning_rate": 7.374705673695748e-06, "epoch": 0.7202917498107755, "percentage": 72.03, "elapsed_time": "7:18:42", "remaining_time": "2:50:19"} +{"current_steps": 2618, "total_steps": 3633, "loss": 0.7841, "learning_rate": 7.361159231073922e-06, "epoch": 0.7205669854813184, "percentage": 72.06, "elapsed_time": "7:18:53", "remaining_time": "2:50:09"} +{"current_steps": 2619, "total_steps": 3633, "loss": 0.7785, "learning_rate": 7.347622434903787e-06, "epoch": 0.7208422211518613, "percentage": 72.09, "elapsed_time": "7:19:03", "remaining_time": "2:49:59"} +{"current_steps": 2620, "total_steps": 3633, "loss": 0.7843, "learning_rate": 7.3340952955171655e-06, "epoch": 0.7211174568224041, "percentage": 72.12, "elapsed_time": "7:19:13", "remaining_time": "2:49:49"} +{"current_steps": 2621, "total_steps": 3633, "loss": 0.7725, "learning_rate": 7.320577823238475e-06, "epoch": 0.7213926924929471, "percentage": 72.14, "elapsed_time": "7:19:23", "remaining_time": "2:49:39"} +{"current_steps": 2622, "total_steps": 3633, "loss": 0.7895, "learning_rate": 7.307070028384782e-06, "epoch": 0.72166792816349, "percentage": 72.17, "elapsed_time": "7:19:33", "remaining_time": "2:49:29"} +{"current_steps": 2623, "total_steps": 3633, "loss": 0.7666, "learning_rate": 7.293571921265765e-06, "epoch": 0.7219431638340329, "percentage": 72.2, "elapsed_time": "7:19:43", "remaining_time": "2:49:19"} +{"current_steps": 2624, "total_steps": 3633, "loss": 0.7633, "learning_rate": 7.280083512183678e-06, "epoch": 0.7222183995045758, "percentage": 72.23, "elapsed_time": "7:19:53", "remaining_time": "2:49:08"} +{"current_steps": 2625, "total_steps": 3633, "loss": 0.7469, "learning_rate": 7.266604811433424e-06, "epoch": 0.7224936351751187, "percentage": 72.25, "elapsed_time": "7:20:03", "remaining_time": "2:48:58"} +{"current_steps": 2626, "total_steps": 3633, "loss": 0.7748, "learning_rate": 7.253135829302451e-06, "epoch": 0.7227688708456615, "percentage": 72.28, "elapsed_time": "7:20:13", "remaining_time": "2:48:48"} +{"current_steps": 2627, "total_steps": 3633, "loss": 0.7818, "learning_rate": 7.239676576070809e-06, "epoch": 0.7230441065162045, "percentage": 72.31, "elapsed_time": "7:20:23", "remaining_time": "2:48:38"} +{"current_steps": 2628, "total_steps": 3633, "loss": 0.7926, "learning_rate": 7.2262270620111305e-06, "epoch": 0.7233193421867474, "percentage": 72.34, "elapsed_time": "7:20:33", "remaining_time": "2:48:28"} +{"current_steps": 2629, "total_steps": 3633, "loss": 0.8123, "learning_rate": 7.212787297388588e-06, "epoch": 0.7235945778572903, "percentage": 72.36, "elapsed_time": "7:20:43", "remaining_time": "2:48:18"} +{"current_steps": 2630, "total_steps": 3633, "loss": 0.7958, "learning_rate": 7.199357292460945e-06, "epoch": 0.7238698135278332, "percentage": 72.39, "elapsed_time": "7:20:53", "remaining_time": "2:48:08"} +{"current_steps": 2631, "total_steps": 3633, "loss": 0.7758, "learning_rate": 7.185937057478478e-06, "epoch": 0.7241450491983761, "percentage": 72.42, "elapsed_time": "7:21:03", "remaining_time": "2:47:58"} +{"current_steps": 2632, "total_steps": 3633, "loss": 0.7828, "learning_rate": 7.172526602684058e-06, "epoch": 0.724420284868919, "percentage": 72.45, "elapsed_time": "7:21:13", "remaining_time": "2:47:48"} +{"current_steps": 2633, "total_steps": 3633, "loss": 0.78, "learning_rate": 7.159125938313041e-06, "epoch": 0.724695520539462, "percentage": 72.47, "elapsed_time": "7:21:23", "remaining_time": "2:47:38"} +{"current_steps": 2634, "total_steps": 3633, "loss": 0.8013, "learning_rate": 7.145735074593338e-06, "epoch": 0.7249707562100048, "percentage": 72.5, "elapsed_time": "7:21:33", "remaining_time": "2:47:28"} +{"current_steps": 2635, "total_steps": 3633, "loss": 0.8054, "learning_rate": 7.132354021745383e-06, "epoch": 0.7252459918805477, "percentage": 72.53, "elapsed_time": "7:21:43", "remaining_time": "2:47:18"} +{"current_steps": 2636, "total_steps": 3633, "loss": 0.7813, "learning_rate": 7.118982789982096e-06, "epoch": 0.7255212275510906, "percentage": 72.56, "elapsed_time": "7:21:53", "remaining_time": "2:47:08"} +{"current_steps": 2637, "total_steps": 3633, "loss": 0.7489, "learning_rate": 7.105621389508925e-06, "epoch": 0.7257964632216335, "percentage": 72.58, "elapsed_time": "7:22:03", "remaining_time": "2:46:58"} +{"current_steps": 2638, "total_steps": 3633, "loss": 0.7875, "learning_rate": 7.09226983052381e-06, "epoch": 0.7260716988921764, "percentage": 72.61, "elapsed_time": "7:22:13", "remaining_time": "2:46:48"} +{"current_steps": 2639, "total_steps": 3633, "loss": 0.7938, "learning_rate": 7.078928123217175e-06, "epoch": 0.7263469345627194, "percentage": 72.64, "elapsed_time": "7:22:24", "remaining_time": "2:46:38"} +{"current_steps": 2640, "total_steps": 3633, "loss": 0.7815, "learning_rate": 7.065596277771931e-06, "epoch": 0.7266221702332623, "percentage": 72.67, "elapsed_time": "7:22:34", "remaining_time": "2:46:27"} +{"current_steps": 2641, "total_steps": 3633, "loss": 0.7776, "learning_rate": 7.052274304363449e-06, "epoch": 0.7268974059038051, "percentage": 72.69, "elapsed_time": "7:22:44", "remaining_time": "2:46:17"} +{"current_steps": 2642, "total_steps": 3633, "loss": 0.7738, "learning_rate": 7.0389622131595835e-06, "epoch": 0.727172641574348, "percentage": 72.72, "elapsed_time": "7:22:54", "remaining_time": "2:46:07"} +{"current_steps": 2643, "total_steps": 3633, "loss": 0.7856, "learning_rate": 7.0256600143206235e-06, "epoch": 0.7274478772448909, "percentage": 72.75, "elapsed_time": "7:23:04", "remaining_time": "2:45:57"} +{"current_steps": 2644, "total_steps": 3633, "loss": 0.7899, "learning_rate": 7.012367717999331e-06, "epoch": 0.7277231129154338, "percentage": 72.78, "elapsed_time": "7:23:14", "remaining_time": "2:45:47"} +{"current_steps": 2645, "total_steps": 3633, "loss": 0.7756, "learning_rate": 6.9990853343408986e-06, "epoch": 0.7279983485859768, "percentage": 72.8, "elapsed_time": "7:23:24", "remaining_time": "2:45:37"} +{"current_steps": 2646, "total_steps": 3633, "loss": 0.7988, "learning_rate": 6.985812873482953e-06, "epoch": 0.7282735842565197, "percentage": 72.83, "elapsed_time": "7:23:34", "remaining_time": "2:45:27"} +{"current_steps": 2647, "total_steps": 3633, "loss": 0.7971, "learning_rate": 6.97255034555556e-06, "epoch": 0.7285488199270626, "percentage": 72.86, "elapsed_time": "7:23:44", "remaining_time": "2:45:17"} +{"current_steps": 2648, "total_steps": 3633, "loss": 0.7856, "learning_rate": 6.959297760681176e-06, "epoch": 0.7288240555976054, "percentage": 72.89, "elapsed_time": "7:23:54", "remaining_time": "2:45:07"} +{"current_steps": 2649, "total_steps": 3633, "loss": 0.7979, "learning_rate": 6.946055128974694e-06, "epoch": 0.7290992912681483, "percentage": 72.91, "elapsed_time": "7:24:04", "remaining_time": "2:44:57"} +{"current_steps": 2650, "total_steps": 3633, "loss": 0.7705, "learning_rate": 6.932822460543409e-06, "epoch": 0.7293745269386912, "percentage": 72.94, "elapsed_time": "7:24:14", "remaining_time": "2:44:47"} +{"current_steps": 2651, "total_steps": 3633, "loss": 0.7994, "learning_rate": 6.919599765486993e-06, "epoch": 0.7296497626092342, "percentage": 72.97, "elapsed_time": "7:24:24", "remaining_time": "2:44:37"} +{"current_steps": 2652, "total_steps": 3633, "loss": 0.7696, "learning_rate": 6.906387053897523e-06, "epoch": 0.7299249982797771, "percentage": 73.0, "elapsed_time": "7:24:34", "remaining_time": "2:44:27"} +{"current_steps": 2653, "total_steps": 3633, "loss": 0.7959, "learning_rate": 6.89318433585945e-06, "epoch": 0.73020023395032, "percentage": 73.03, "elapsed_time": "7:24:44", "remaining_time": "2:44:17"} +{"current_steps": 2654, "total_steps": 3633, "loss": 0.7684, "learning_rate": 6.879991621449602e-06, "epoch": 0.7304754696208628, "percentage": 73.05, "elapsed_time": "7:24:54", "remaining_time": "2:44:07"} +{"current_steps": 2655, "total_steps": 3633, "loss": 0.73, "learning_rate": 6.866808920737174e-06, "epoch": 0.7307507052914057, "percentage": 73.08, "elapsed_time": "7:25:04", "remaining_time": "2:43:57"} +{"current_steps": 2656, "total_steps": 3633, "loss": 0.7733, "learning_rate": 6.853636243783697e-06, "epoch": 0.7310259409619486, "percentage": 73.11, "elapsed_time": "7:25:14", "remaining_time": "2:43:46"} +{"current_steps": 2657, "total_steps": 3633, "loss": 0.8002, "learning_rate": 6.840473600643081e-06, "epoch": 0.7313011766324916, "percentage": 73.14, "elapsed_time": "7:25:24", "remaining_time": "2:43:36"} +{"current_steps": 2658, "total_steps": 3633, "loss": 0.7817, "learning_rate": 6.8273210013615536e-06, "epoch": 0.7315764123030345, "percentage": 73.16, "elapsed_time": "7:25:34", "remaining_time": "2:43:26"} +{"current_steps": 2659, "total_steps": 3633, "loss": 0.8007, "learning_rate": 6.814178455977689e-06, "epoch": 0.7318516479735774, "percentage": 73.19, "elapsed_time": "7:25:45", "remaining_time": "2:43:16"} +{"current_steps": 2660, "total_steps": 3633, "loss": 0.7615, "learning_rate": 6.801045974522389e-06, "epoch": 0.7321268836441203, "percentage": 73.22, "elapsed_time": "7:25:55", "remaining_time": "2:43:06"} +{"current_steps": 2661, "total_steps": 3633, "loss": 0.7709, "learning_rate": 6.7879235670188705e-06, "epoch": 0.7324021193146631, "percentage": 73.25, "elapsed_time": "7:26:05", "remaining_time": "2:42:56"} +{"current_steps": 2662, "total_steps": 3633, "loss": 0.7628, "learning_rate": 6.774811243482667e-06, "epoch": 0.732677354985206, "percentage": 73.27, "elapsed_time": "7:26:15", "remaining_time": "2:42:46"} +{"current_steps": 2663, "total_steps": 3633, "loss": 0.7752, "learning_rate": 6.7617090139216e-06, "epoch": 0.732952590655749, "percentage": 73.3, "elapsed_time": "7:26:25", "remaining_time": "2:42:36"} +{"current_steps": 2664, "total_steps": 3633, "loss": 0.7897, "learning_rate": 6.7486168883358015e-06, "epoch": 0.7332278263262919, "percentage": 73.33, "elapsed_time": "7:26:35", "remaining_time": "2:42:26"} +{"current_steps": 2665, "total_steps": 3633, "loss": 0.7815, "learning_rate": 6.735534876717695e-06, "epoch": 0.7335030619968348, "percentage": 73.36, "elapsed_time": "7:26:45", "remaining_time": "2:42:16"} +{"current_steps": 2666, "total_steps": 3633, "loss": 0.788, "learning_rate": 6.722462989051965e-06, "epoch": 0.7337782976673777, "percentage": 73.38, "elapsed_time": "7:26:55", "remaining_time": "2:42:06"} +{"current_steps": 2667, "total_steps": 3633, "loss": 0.7916, "learning_rate": 6.709401235315587e-06, "epoch": 0.7340535333379206, "percentage": 73.41, "elapsed_time": "7:27:05", "remaining_time": "2:41:56"} +{"current_steps": 2668, "total_steps": 3633, "loss": 0.7914, "learning_rate": 6.696349625477798e-06, "epoch": 0.7343287690084634, "percentage": 73.44, "elapsed_time": "7:27:15", "remaining_time": "2:41:46"} +{"current_steps": 2669, "total_steps": 3633, "loss": 0.7866, "learning_rate": 6.683308169500094e-06, "epoch": 0.7346040046790064, "percentage": 73.47, "elapsed_time": "7:27:25", "remaining_time": "2:41:36"} +{"current_steps": 2670, "total_steps": 3633, "loss": 0.7639, "learning_rate": 6.670276877336208e-06, "epoch": 0.7348792403495493, "percentage": 73.49, "elapsed_time": "7:27:35", "remaining_time": "2:41:26"} +{"current_steps": 2671, "total_steps": 3633, "loss": 0.7593, "learning_rate": 6.657255758932133e-06, "epoch": 0.7351544760200922, "percentage": 73.52, "elapsed_time": "7:27:45", "remaining_time": "2:41:16"} +{"current_steps": 2672, "total_steps": 3633, "loss": 0.7784, "learning_rate": 6.644244824226094e-06, "epoch": 0.7354297116906351, "percentage": 73.55, "elapsed_time": "7:27:55", "remaining_time": "2:41:05"} +{"current_steps": 2673, "total_steps": 3633, "loss": 0.7744, "learning_rate": 6.631244083148525e-06, "epoch": 0.735704947361178, "percentage": 73.58, "elapsed_time": "7:28:05", "remaining_time": "2:40:55"} +{"current_steps": 2674, "total_steps": 3633, "loss": 0.7521, "learning_rate": 6.618253545622104e-06, "epoch": 0.7359801830317209, "percentage": 73.6, "elapsed_time": "7:28:15", "remaining_time": "2:40:45"} +{"current_steps": 2675, "total_steps": 3633, "loss": 0.7424, "learning_rate": 6.60527322156171e-06, "epoch": 0.7362554187022639, "percentage": 73.63, "elapsed_time": "7:28:25", "remaining_time": "2:40:35"} +{"current_steps": 2676, "total_steps": 3633, "loss": 0.7774, "learning_rate": 6.592303120874428e-06, "epoch": 0.7365306543728067, "percentage": 73.66, "elapsed_time": "7:28:35", "remaining_time": "2:40:25"} +{"current_steps": 2677, "total_steps": 3633, "loss": 0.7824, "learning_rate": 6.579343253459545e-06, "epoch": 0.7368058900433496, "percentage": 73.69, "elapsed_time": "7:28:45", "remaining_time": "2:40:15"} +{"current_steps": 2678, "total_steps": 3633, "loss": 0.7753, "learning_rate": 6.566393629208523e-06, "epoch": 0.7370811257138925, "percentage": 73.71, "elapsed_time": "7:28:55", "remaining_time": "2:40:05"} +{"current_steps": 2679, "total_steps": 3633, "loss": 0.7922, "learning_rate": 6.553454258005025e-06, "epoch": 0.7373563613844354, "percentage": 73.74, "elapsed_time": "7:29:05", "remaining_time": "2:39:55"} +{"current_steps": 2680, "total_steps": 3633, "loss": 0.7764, "learning_rate": 6.540525149724868e-06, "epoch": 0.7376315970549783, "percentage": 73.77, "elapsed_time": "7:29:15", "remaining_time": "2:39:45"} +{"current_steps": 2681, "total_steps": 3633, "loss": 0.8113, "learning_rate": 6.527606314236053e-06, "epoch": 0.7379068327255213, "percentage": 73.8, "elapsed_time": "7:29:25", "remaining_time": "2:39:35"} +{"current_steps": 2682, "total_steps": 3633, "loss": 0.7628, "learning_rate": 6.514697761398734e-06, "epoch": 0.7381820683960642, "percentage": 73.82, "elapsed_time": "7:29:35", "remaining_time": "2:39:25"} +{"current_steps": 2683, "total_steps": 3633, "loss": 0.7783, "learning_rate": 6.501799501065218e-06, "epoch": 0.738457304066607, "percentage": 73.85, "elapsed_time": "7:29:46", "remaining_time": "2:39:15"} +{"current_steps": 2684, "total_steps": 3633, "loss": 0.7874, "learning_rate": 6.488911543079963e-06, "epoch": 0.7387325397371499, "percentage": 73.88, "elapsed_time": "7:29:56", "remaining_time": "2:39:05"} +{"current_steps": 2685, "total_steps": 3633, "loss": 0.763, "learning_rate": 6.476033897279544e-06, "epoch": 0.7390077754076928, "percentage": 73.91, "elapsed_time": "7:30:06", "remaining_time": "2:38:55"} +{"current_steps": 2686, "total_steps": 3633, "loss": 0.7884, "learning_rate": 6.463166573492683e-06, "epoch": 0.7392830110782357, "percentage": 73.93, "elapsed_time": "7:30:16", "remaining_time": "2:38:45"} +{"current_steps": 2687, "total_steps": 3633, "loss": 0.7806, "learning_rate": 6.450309581540224e-06, "epoch": 0.7395582467487787, "percentage": 73.96, "elapsed_time": "7:30:26", "remaining_time": "2:38:34"} +{"current_steps": 2688, "total_steps": 3633, "loss": 0.7614, "learning_rate": 6.437462931235103e-06, "epoch": 0.7398334824193216, "percentage": 73.99, "elapsed_time": "7:30:36", "remaining_time": "2:38:24"} +{"current_steps": 2689, "total_steps": 3633, "loss": 0.7608, "learning_rate": 6.424626632382407e-06, "epoch": 0.7401087180898644, "percentage": 74.02, "elapsed_time": "7:30:46", "remaining_time": "2:38:14"} +{"current_steps": 2690, "total_steps": 3633, "loss": 0.791, "learning_rate": 6.411800694779271e-06, "epoch": 0.7403839537604073, "percentage": 74.04, "elapsed_time": "7:30:56", "remaining_time": "2:38:04"} +{"current_steps": 2691, "total_steps": 3633, "loss": 0.7775, "learning_rate": 6.398985128214959e-06, "epoch": 0.7406591894309502, "percentage": 74.07, "elapsed_time": "7:31:06", "remaining_time": "2:37:54"} +{"current_steps": 2692, "total_steps": 3633, "loss": 0.7706, "learning_rate": 6.386179942470807e-06, "epoch": 0.7409344251014931, "percentage": 74.1, "elapsed_time": "7:31:16", "remaining_time": "2:37:44"} +{"current_steps": 2693, "total_steps": 3633, "loss": 0.7541, "learning_rate": 6.373385147320219e-06, "epoch": 0.7412096607720361, "percentage": 74.13, "elapsed_time": "7:31:26", "remaining_time": "2:37:34"} +{"current_steps": 2694, "total_steps": 3633, "loss": 0.7777, "learning_rate": 6.360600752528689e-06, "epoch": 0.741484896442579, "percentage": 74.15, "elapsed_time": "7:31:36", "remaining_time": "2:37:24"} +{"current_steps": 2695, "total_steps": 3633, "loss": 0.7725, "learning_rate": 6.3478267678537396e-06, "epoch": 0.7417601321131219, "percentage": 74.18, "elapsed_time": "7:31:46", "remaining_time": "2:37:14"} +{"current_steps": 2696, "total_steps": 3633, "loss": 0.7827, "learning_rate": 6.335063203045e-06, "epoch": 0.7420353677836647, "percentage": 74.21, "elapsed_time": "7:31:56", "remaining_time": "2:37:04"} +{"current_steps": 2697, "total_steps": 3633, "loss": 0.7903, "learning_rate": 6.322310067844091e-06, "epoch": 0.7423106034542076, "percentage": 74.24, "elapsed_time": "7:32:06", "remaining_time": "2:36:54"} +{"current_steps": 2698, "total_steps": 3633, "loss": 0.7879, "learning_rate": 6.3095673719847106e-06, "epoch": 0.7425858391247505, "percentage": 74.26, "elapsed_time": "7:32:16", "remaining_time": "2:36:44"} +{"current_steps": 2699, "total_steps": 3633, "loss": 0.7555, "learning_rate": 6.296835125192578e-06, "epoch": 0.7428610747952935, "percentage": 74.29, "elapsed_time": "7:32:26", "remaining_time": "2:36:34"} +{"current_steps": 2700, "total_steps": 3633, "loss": 0.7712, "learning_rate": 6.284113337185425e-06, "epoch": 0.7431363104658364, "percentage": 74.32, "elapsed_time": "7:32:36", "remaining_time": "2:36:24"} +{"current_steps": 2701, "total_steps": 3633, "loss": 0.7786, "learning_rate": 6.271402017673021e-06, "epoch": 0.7434115461363793, "percentage": 74.35, "elapsed_time": "7:32:46", "remaining_time": "2:36:14"} +{"current_steps": 2702, "total_steps": 3633, "loss": 0.8017, "learning_rate": 6.258701176357132e-06, "epoch": 0.7436867818069222, "percentage": 74.37, "elapsed_time": "7:32:56", "remaining_time": "2:36:03"} +{"current_steps": 2703, "total_steps": 3633, "loss": 0.7674, "learning_rate": 6.246010822931532e-06, "epoch": 0.743962017477465, "percentage": 74.4, "elapsed_time": "7:33:06", "remaining_time": "2:35:53"} +{"current_steps": 2704, "total_steps": 3633, "loss": 0.7586, "learning_rate": 6.2333309670819965e-06, "epoch": 0.7442372531480079, "percentage": 74.43, "elapsed_time": "7:33:16", "remaining_time": "2:35:43"} +{"current_steps": 2705, "total_steps": 3633, "loss": 0.7701, "learning_rate": 6.220661618486268e-06, "epoch": 0.7445124888185509, "percentage": 74.46, "elapsed_time": "7:33:26", "remaining_time": "2:35:33"} +{"current_steps": 2706, "total_steps": 3633, "loss": 0.7659, "learning_rate": 6.208002786814098e-06, "epoch": 0.7447877244890938, "percentage": 74.48, "elapsed_time": "7:33:36", "remaining_time": "2:35:23"} +{"current_steps": 2707, "total_steps": 3633, "loss": 0.7678, "learning_rate": 6.195354481727181e-06, "epoch": 0.7450629601596367, "percentage": 74.51, "elapsed_time": "7:33:46", "remaining_time": "2:35:13"} +{"current_steps": 2708, "total_steps": 3633, "loss": 0.761, "learning_rate": 6.182716712879198e-06, "epoch": 0.7453381958301796, "percentage": 74.54, "elapsed_time": "7:33:57", "remaining_time": "2:35:03"} +{"current_steps": 2709, "total_steps": 3633, "loss": 0.7845, "learning_rate": 6.170089489915792e-06, "epoch": 0.7456134315007225, "percentage": 74.57, "elapsed_time": "7:34:07", "remaining_time": "2:34:53"} +{"current_steps": 2710, "total_steps": 3633, "loss": 0.7601, "learning_rate": 6.157472822474524e-06, "epoch": 0.7458886671712655, "percentage": 74.59, "elapsed_time": "7:34:17", "remaining_time": "2:34:43"} +{"current_steps": 2711, "total_steps": 3633, "loss": 0.7758, "learning_rate": 6.144866720184952e-06, "epoch": 0.7461639028418083, "percentage": 74.62, "elapsed_time": "7:34:27", "remaining_time": "2:34:33"} +{"current_steps": 2712, "total_steps": 3633, "loss": 0.7822, "learning_rate": 6.132271192668518e-06, "epoch": 0.7464391385123512, "percentage": 74.65, "elapsed_time": "7:34:37", "remaining_time": "2:34:23"} +{"current_steps": 2713, "total_steps": 3633, "loss": 0.8066, "learning_rate": 6.119686249538624e-06, "epoch": 0.7467143741828941, "percentage": 74.68, "elapsed_time": "7:34:47", "remaining_time": "2:34:13"} +{"current_steps": 2714, "total_steps": 3633, "loss": 0.7641, "learning_rate": 6.107111900400589e-06, "epoch": 0.746989609853437, "percentage": 74.7, "elapsed_time": "7:34:57", "remaining_time": "2:34:03"} +{"current_steps": 2715, "total_steps": 3633, "loss": 0.7967, "learning_rate": 6.094548154851631e-06, "epoch": 0.7472648455239799, "percentage": 74.73, "elapsed_time": "7:35:07", "remaining_time": "2:33:53"} +{"current_steps": 2716, "total_steps": 3633, "loss": 0.7831, "learning_rate": 6.0819950224809024e-06, "epoch": 0.7475400811945229, "percentage": 74.76, "elapsed_time": "7:35:17", "remaining_time": "2:33:43"} +{"current_steps": 2717, "total_steps": 3633, "loss": 0.7676, "learning_rate": 6.069452512869411e-06, "epoch": 0.7478153168650657, "percentage": 74.79, "elapsed_time": "7:35:27", "remaining_time": "2:33:33"} +{"current_steps": 2718, "total_steps": 3633, "loss": 0.7694, "learning_rate": 6.05692063559012e-06, "epoch": 0.7480905525356086, "percentage": 74.81, "elapsed_time": "7:35:37", "remaining_time": "2:33:23"} +{"current_steps": 2719, "total_steps": 3633, "loss": 0.7628, "learning_rate": 6.044399400207817e-06, "epoch": 0.7483657882061515, "percentage": 74.84, "elapsed_time": "7:35:47", "remaining_time": "2:33:12"} +{"current_steps": 2720, "total_steps": 3633, "loss": 0.7869, "learning_rate": 6.031888816279199e-06, "epoch": 0.7486410238766944, "percentage": 74.87, "elapsed_time": "7:35:57", "remaining_time": "2:33:02"} +{"current_steps": 2721, "total_steps": 3633, "loss": 0.7362, "learning_rate": 6.019388893352838e-06, "epoch": 0.7489162595472373, "percentage": 74.9, "elapsed_time": "7:36:07", "remaining_time": "2:32:52"} +{"current_steps": 2722, "total_steps": 3633, "loss": 0.7621, "learning_rate": 6.006899640969142e-06, "epoch": 0.7491914952177803, "percentage": 74.92, "elapsed_time": "7:36:17", "remaining_time": "2:32:42"} +{"current_steps": 2723, "total_steps": 3633, "loss": 0.7796, "learning_rate": 5.994421068660396e-06, "epoch": 0.7494667308883232, "percentage": 74.95, "elapsed_time": "7:36:27", "remaining_time": "2:32:32"} +{"current_steps": 2724, "total_steps": 3633, "loss": 0.7539, "learning_rate": 5.981953185950735e-06, "epoch": 0.749741966558866, "percentage": 74.98, "elapsed_time": "7:36:37", "remaining_time": "2:32:22"} +{"current_steps": 2725, "total_steps": 3633, "loss": 0.7842, "learning_rate": 5.969496002356121e-06, "epoch": 0.7500172022294089, "percentage": 75.01, "elapsed_time": "7:36:47", "remaining_time": "2:32:12"} +{"current_steps": 2726, "total_steps": 3633, "loss": 0.7579, "learning_rate": 5.9570495273843705e-06, "epoch": 0.7502924378999518, "percentage": 75.03, "elapsed_time": "7:36:57", "remaining_time": "2:32:02"} +{"current_steps": 2727, "total_steps": 3633, "loss": 0.7839, "learning_rate": 5.944613770535099e-06, "epoch": 0.7505676735704947, "percentage": 75.06, "elapsed_time": "7:37:07", "remaining_time": "2:31:52"} +{"current_steps": 2728, "total_steps": 3633, "loss": 0.7824, "learning_rate": 5.9321887412997695e-06, "epoch": 0.7508429092410377, "percentage": 75.09, "elapsed_time": "7:37:17", "remaining_time": "2:31:42"} +{"current_steps": 2729, "total_steps": 3633, "loss": 0.7364, "learning_rate": 5.91977444916163e-06, "epoch": 0.7511181449115806, "percentage": 75.12, "elapsed_time": "7:37:27", "remaining_time": "2:31:32"} +{"current_steps": 2730, "total_steps": 3633, "loss": 0.7797, "learning_rate": 5.907370903595757e-06, "epoch": 0.7513933805821235, "percentage": 75.14, "elapsed_time": "7:37:37", "remaining_time": "2:31:22"} +{"current_steps": 2731, "total_steps": 3633, "loss": 0.7674, "learning_rate": 5.8949781140690166e-06, "epoch": 0.7516686162526663, "percentage": 75.17, "elapsed_time": "7:37:47", "remaining_time": "2:31:12"} +{"current_steps": 2732, "total_steps": 3633, "loss": 0.7473, "learning_rate": 5.882596090040061e-06, "epoch": 0.7519438519232092, "percentage": 75.2, "elapsed_time": "7:37:57", "remaining_time": "2:31:02"} +{"current_steps": 2733, "total_steps": 3633, "loss": 0.7812, "learning_rate": 5.87022484095934e-06, "epoch": 0.7522190875937521, "percentage": 75.23, "elapsed_time": "7:38:07", "remaining_time": "2:30:52"} +{"current_steps": 2734, "total_steps": 3633, "loss": 0.7721, "learning_rate": 5.857864376269051e-06, "epoch": 0.7524943232642951, "percentage": 75.25, "elapsed_time": "7:38:18", "remaining_time": "2:30:41"} +{"current_steps": 2735, "total_steps": 3633, "loss": 0.8085, "learning_rate": 5.84551470540319e-06, "epoch": 0.752769558934838, "percentage": 75.28, "elapsed_time": "7:38:28", "remaining_time": "2:30:31"} +{"current_steps": 2736, "total_steps": 3633, "loss": 0.7746, "learning_rate": 5.833175837787506e-06, "epoch": 0.7530447946053809, "percentage": 75.31, "elapsed_time": "7:38:38", "remaining_time": "2:30:21"} +{"current_steps": 2737, "total_steps": 3633, "loss": 0.7854, "learning_rate": 5.820847782839489e-06, "epoch": 0.7533200302759238, "percentage": 75.34, "elapsed_time": "7:38:48", "remaining_time": "2:30:11"} +{"current_steps": 2738, "total_steps": 3633, "loss": 0.7545, "learning_rate": 5.808530549968392e-06, "epoch": 0.7535952659464666, "percentage": 75.36, "elapsed_time": "7:38:58", "remaining_time": "2:30:01"} +{"current_steps": 2739, "total_steps": 3633, "loss": 0.7645, "learning_rate": 5.796224148575203e-06, "epoch": 0.7538705016170095, "percentage": 75.39, "elapsed_time": "7:39:08", "remaining_time": "2:29:51"} +{"current_steps": 2740, "total_steps": 3633, "loss": 0.7659, "learning_rate": 5.783928588052643e-06, "epoch": 0.7541457372875525, "percentage": 75.42, "elapsed_time": "7:39:18", "remaining_time": "2:29:41"} +{"current_steps": 2741, "total_steps": 3633, "loss": 0.7639, "learning_rate": 5.771643877785167e-06, "epoch": 0.7544209729580954, "percentage": 75.45, "elapsed_time": "7:39:28", "remaining_time": "2:29:31"} +{"current_steps": 2742, "total_steps": 3633, "loss": 0.7552, "learning_rate": 5.759370027148925e-06, "epoch": 0.7546962086286383, "percentage": 75.47, "elapsed_time": "7:39:38", "remaining_time": "2:29:21"} +{"current_steps": 2743, "total_steps": 3633, "loss": 0.7623, "learning_rate": 5.747107045511811e-06, "epoch": 0.7549714442991812, "percentage": 75.5, "elapsed_time": "7:39:48", "remaining_time": "2:29:11"} +{"current_steps": 2744, "total_steps": 3633, "loss": 0.7896, "learning_rate": 5.73485494223339e-06, "epoch": 0.755246679969724, "percentage": 75.53, "elapsed_time": "7:39:58", "remaining_time": "2:29:01"} +{"current_steps": 2745, "total_steps": 3633, "loss": 0.7625, "learning_rate": 5.72261372666495e-06, "epoch": 0.7555219156402669, "percentage": 75.56, "elapsed_time": "7:40:08", "remaining_time": "2:28:51"} +{"current_steps": 2746, "total_steps": 3633, "loss": 0.7759, "learning_rate": 5.710383408149456e-06, "epoch": 0.7557971513108099, "percentage": 75.58, "elapsed_time": "7:40:18", "remaining_time": "2:28:41"} +{"current_steps": 2747, "total_steps": 3633, "loss": 0.8087, "learning_rate": 5.698163996021564e-06, "epoch": 0.7560723869813528, "percentage": 75.61, "elapsed_time": "7:40:28", "remaining_time": "2:28:31"} +{"current_steps": 2748, "total_steps": 3633, "loss": 0.7726, "learning_rate": 5.685955499607605e-06, "epoch": 0.7563476226518957, "percentage": 75.64, "elapsed_time": "7:40:38", "remaining_time": "2:28:21"} +{"current_steps": 2749, "total_steps": 3633, "loss": 0.7658, "learning_rate": 5.673757928225563e-06, "epoch": 0.7566228583224386, "percentage": 75.67, "elapsed_time": "7:40:48", "remaining_time": "2:28:11"} +{"current_steps": 2750, "total_steps": 3633, "loss": 0.7932, "learning_rate": 5.6615712911851016e-06, "epoch": 0.7568980939929815, "percentage": 75.7, "elapsed_time": "7:40:58", "remaining_time": "2:28:01"} +{"current_steps": 2751, "total_steps": 3633, "loss": 0.7724, "learning_rate": 5.649395597787544e-06, "epoch": 0.7571733296635244, "percentage": 75.72, "elapsed_time": "7:41:08", "remaining_time": "2:27:50"} +{"current_steps": 2752, "total_steps": 3633, "loss": 0.772, "learning_rate": 5.6372308573258235e-06, "epoch": 0.7574485653340673, "percentage": 75.75, "elapsed_time": "7:41:18", "remaining_time": "2:27:40"} +{"current_steps": 2753, "total_steps": 3633, "loss": 0.7657, "learning_rate": 5.625077079084571e-06, "epoch": 0.7577238010046102, "percentage": 75.78, "elapsed_time": "7:41:29", "remaining_time": "2:27:30"} +{"current_steps": 2754, "total_steps": 3633, "loss": 0.7785, "learning_rate": 5.612934272340001e-06, "epoch": 0.7579990366751531, "percentage": 75.81, "elapsed_time": "7:41:39", "remaining_time": "2:27:20"} +{"current_steps": 2755, "total_steps": 3633, "loss": 0.7583, "learning_rate": 5.600802446359981e-06, "epoch": 0.758274272345696, "percentage": 75.83, "elapsed_time": "7:41:49", "remaining_time": "2:27:10"} +{"current_steps": 2756, "total_steps": 3633, "loss": 0.7875, "learning_rate": 5.588681610403978e-06, "epoch": 0.7585495080162389, "percentage": 75.86, "elapsed_time": "7:41:59", "remaining_time": "2:27:00"} +{"current_steps": 2757, "total_steps": 3633, "loss": 0.7572, "learning_rate": 5.576571773723094e-06, "epoch": 0.7588247436867818, "percentage": 75.89, "elapsed_time": "7:42:09", "remaining_time": "2:26:50"} +{"current_steps": 2758, "total_steps": 3633, "loss": 0.7873, "learning_rate": 5.5644729455600246e-06, "epoch": 0.7590999793573248, "percentage": 75.92, "elapsed_time": "7:42:19", "remaining_time": "2:26:40"} +{"current_steps": 2759, "total_steps": 3633, "loss": 0.769, "learning_rate": 5.552385135149048e-06, "epoch": 0.7593752150278676, "percentage": 75.94, "elapsed_time": "7:42:29", "remaining_time": "2:26:30"} +{"current_steps": 2760, "total_steps": 3633, "loss": 0.7844, "learning_rate": 5.5403083517160686e-06, "epoch": 0.7596504506984105, "percentage": 75.97, "elapsed_time": "7:42:39", "remaining_time": "2:26:20"} +{"current_steps": 2761, "total_steps": 3633, "loss": 0.765, "learning_rate": 5.5282426044785396e-06, "epoch": 0.7599256863689534, "percentage": 76.0, "elapsed_time": "7:42:49", "remaining_time": "2:26:10"} +{"current_steps": 2762, "total_steps": 3633, "loss": 0.7427, "learning_rate": 5.516187902645511e-06, "epoch": 0.7602009220394963, "percentage": 76.03, "elapsed_time": "7:42:59", "remaining_time": "2:26:00"} +{"current_steps": 2763, "total_steps": 3633, "loss": 0.7859, "learning_rate": 5.504144255417605e-06, "epoch": 0.7604761577100392, "percentage": 76.05, "elapsed_time": "7:43:09", "remaining_time": "2:25:50"} +{"current_steps": 2764, "total_steps": 3633, "loss": 0.7817, "learning_rate": 5.492111671986981e-06, "epoch": 0.7607513933805822, "percentage": 76.08, "elapsed_time": "7:43:19", "remaining_time": "2:25:40"} +{"current_steps": 2765, "total_steps": 3633, "loss": 0.7757, "learning_rate": 5.480090161537388e-06, "epoch": 0.7610266290511251, "percentage": 76.11, "elapsed_time": "7:43:29", "remaining_time": "2:25:30"} +{"current_steps": 2766, "total_steps": 3633, "loss": 0.7554, "learning_rate": 5.468079733244096e-06, "epoch": 0.7613018647216679, "percentage": 76.14, "elapsed_time": "7:43:39", "remaining_time": "2:25:20"} +{"current_steps": 2767, "total_steps": 3633, "loss": 0.8011, "learning_rate": 5.45608039627393e-06, "epoch": 0.7615771003922108, "percentage": 76.16, "elapsed_time": "7:43:49", "remaining_time": "2:25:10"} +{"current_steps": 2768, "total_steps": 3633, "loss": 0.8036, "learning_rate": 5.444092159785252e-06, "epoch": 0.7618523360627537, "percentage": 76.19, "elapsed_time": "7:43:59", "remaining_time": "2:24:59"} +{"current_steps": 2769, "total_steps": 3633, "loss": 0.7653, "learning_rate": 5.4321150329279444e-06, "epoch": 0.7621275717332966, "percentage": 76.22, "elapsed_time": "7:44:09", "remaining_time": "2:24:49"} +{"current_steps": 2770, "total_steps": 3633, "loss": 0.7601, "learning_rate": 5.420149024843422e-06, "epoch": 0.7624028074038396, "percentage": 76.25, "elapsed_time": "7:44:19", "remaining_time": "2:24:39"} +{"current_steps": 2771, "total_steps": 3633, "loss": 0.7786, "learning_rate": 5.408194144664589e-06, "epoch": 0.7626780430743825, "percentage": 76.27, "elapsed_time": "7:44:29", "remaining_time": "2:24:29"} +{"current_steps": 2772, "total_steps": 3633, "loss": 0.7573, "learning_rate": 5.396250401515879e-06, "epoch": 0.7629532787449254, "percentage": 76.3, "elapsed_time": "7:44:39", "remaining_time": "2:24:19"} +{"current_steps": 2773, "total_steps": 3633, "loss": 0.7686, "learning_rate": 5.384317804513226e-06, "epoch": 0.7632285144154682, "percentage": 76.33, "elapsed_time": "7:44:50", "remaining_time": "2:24:09"} +{"current_steps": 2774, "total_steps": 3633, "loss": 0.7482, "learning_rate": 5.372396362764032e-06, "epoch": 0.7635037500860111, "percentage": 76.36, "elapsed_time": "7:45:00", "remaining_time": "2:23:59"} +{"current_steps": 2775, "total_steps": 3633, "loss": 0.7727, "learning_rate": 5.360486085367223e-06, "epoch": 0.763778985756554, "percentage": 76.38, "elapsed_time": "7:45:10", "remaining_time": "2:23:49"} +{"current_steps": 2776, "total_steps": 3633, "loss": 0.7431, "learning_rate": 5.348586981413167e-06, "epoch": 0.764054221427097, "percentage": 76.41, "elapsed_time": "7:45:20", "remaining_time": "2:23:39"} +{"current_steps": 2777, "total_steps": 3633, "loss": 0.766, "learning_rate": 5.33669905998373e-06, "epoch": 0.7643294570976399, "percentage": 76.44, "elapsed_time": "7:45:30", "remaining_time": "2:23:29"} +{"current_steps": 2778, "total_steps": 3633, "loss": 0.7729, "learning_rate": 5.324822330152224e-06, "epoch": 0.7646046927681828, "percentage": 76.47, "elapsed_time": "7:45:40", "remaining_time": "2:23:19"} +{"current_steps": 2779, "total_steps": 3633, "loss": 0.7824, "learning_rate": 5.312956800983431e-06, "epoch": 0.7648799284387257, "percentage": 76.49, "elapsed_time": "7:45:50", "remaining_time": "2:23:09"} +{"current_steps": 2780, "total_steps": 3633, "loss": 0.7663, "learning_rate": 5.301102481533588e-06, "epoch": 0.7651551641092685, "percentage": 76.52, "elapsed_time": "7:46:00", "remaining_time": "2:22:59"} +{"current_steps": 2781, "total_steps": 3633, "loss": 0.7536, "learning_rate": 5.289259380850356e-06, "epoch": 0.7654303997798114, "percentage": 76.55, "elapsed_time": "7:46:10", "remaining_time": "2:22:49"} +{"current_steps": 2782, "total_steps": 3633, "loss": 0.8017, "learning_rate": 5.277427507972865e-06, "epoch": 0.7657056354503544, "percentage": 76.58, "elapsed_time": "7:46:20", "remaining_time": "2:22:39"} +{"current_steps": 2783, "total_steps": 3633, "loss": 0.7809, "learning_rate": 5.265606871931646e-06, "epoch": 0.7659808711208973, "percentage": 76.6, "elapsed_time": "7:46:30", "remaining_time": "2:22:29"} +{"current_steps": 2784, "total_steps": 3633, "loss": 0.728, "learning_rate": 5.253797481748664e-06, "epoch": 0.7662561067914402, "percentage": 76.63, "elapsed_time": "7:46:40", "remaining_time": "2:22:18"} +{"current_steps": 2785, "total_steps": 3633, "loss": 0.7752, "learning_rate": 5.241999346437312e-06, "epoch": 0.7665313424619831, "percentage": 76.66, "elapsed_time": "7:46:50", "remaining_time": "2:22:08"} +{"current_steps": 2786, "total_steps": 3633, "loss": 0.7748, "learning_rate": 5.230212475002372e-06, "epoch": 0.766806578132526, "percentage": 76.69, "elapsed_time": "7:47:00", "remaining_time": "2:21:58"} +{"current_steps": 2787, "total_steps": 3633, "loss": 0.7666, "learning_rate": 5.218436876440043e-06, "epoch": 0.7670818138030688, "percentage": 76.71, "elapsed_time": "7:47:10", "remaining_time": "2:21:48"} +{"current_steps": 2788, "total_steps": 3633, "loss": 0.7605, "learning_rate": 5.206672559737918e-06, "epoch": 0.7673570494736118, "percentage": 76.74, "elapsed_time": "7:47:20", "remaining_time": "2:21:38"} +{"current_steps": 2789, "total_steps": 3633, "loss": 0.7761, "learning_rate": 5.194919533874978e-06, "epoch": 0.7676322851441547, "percentage": 76.77, "elapsed_time": "7:47:30", "remaining_time": "2:21:28"} +{"current_steps": 2790, "total_steps": 3633, "loss": 0.7969, "learning_rate": 5.1831778078215934e-06, "epoch": 0.7679075208146976, "percentage": 76.8, "elapsed_time": "7:47:41", "remaining_time": "2:21:18"} +{"current_steps": 2791, "total_steps": 3633, "loss": 0.7656, "learning_rate": 5.17144739053949e-06, "epoch": 0.7681827564852405, "percentage": 76.82, "elapsed_time": "7:47:51", "remaining_time": "2:21:08"} +{"current_steps": 2792, "total_steps": 3633, "loss": 0.7448, "learning_rate": 5.159728290981789e-06, "epoch": 0.7684579921557834, "percentage": 76.85, "elapsed_time": "7:48:01", "remaining_time": "2:20:58"} +{"current_steps": 2793, "total_steps": 3633, "loss": 0.7464, "learning_rate": 5.148020518092946e-06, "epoch": 0.7687332278263262, "percentage": 76.88, "elapsed_time": "7:48:11", "remaining_time": "2:20:48"} +{"current_steps": 2794, "total_steps": 3633, "loss": 0.7527, "learning_rate": 5.136324080808794e-06, "epoch": 0.7690084634968692, "percentage": 76.91, "elapsed_time": "7:48:21", "remaining_time": "2:20:38"} +{"current_steps": 2795, "total_steps": 3633, "loss": 0.7661, "learning_rate": 5.124638988056505e-06, "epoch": 0.7692836991674121, "percentage": 76.93, "elapsed_time": "7:48:31", "remaining_time": "2:20:28"} +{"current_steps": 2796, "total_steps": 3633, "loss": 0.7623, "learning_rate": 5.112965248754593e-06, "epoch": 0.769558934837955, "percentage": 76.96, "elapsed_time": "7:48:41", "remaining_time": "2:20:18"} +{"current_steps": 2797, "total_steps": 3633, "loss": 0.7898, "learning_rate": 5.1013028718129125e-06, "epoch": 0.7698341705084979, "percentage": 76.99, "elapsed_time": "7:48:51", "remaining_time": "2:20:08"} +{"current_steps": 2798, "total_steps": 3633, "loss": 0.7751, "learning_rate": 5.08965186613263e-06, "epoch": 0.7701094061790408, "percentage": 77.02, "elapsed_time": "7:49:01", "remaining_time": "2:19:58"} +{"current_steps": 2799, "total_steps": 3633, "loss": 0.7648, "learning_rate": 5.078012240606247e-06, "epoch": 0.7703846418495837, "percentage": 77.04, "elapsed_time": "7:49:11", "remaining_time": "2:19:48"} +{"current_steps": 2800, "total_steps": 3633, "loss": 0.7782, "learning_rate": 5.066384004117584e-06, "epoch": 0.7706598775201267, "percentage": 77.07, "elapsed_time": "7:49:21", "remaining_time": "2:19:38"} +{"current_steps": 2801, "total_steps": 3633, "loss": 0.7784, "learning_rate": 5.0547671655417475e-06, "epoch": 0.7709351131906695, "percentage": 77.1, "elapsed_time": "7:49:31", "remaining_time": "2:19:28"} +{"current_steps": 2802, "total_steps": 3633, "loss": 0.7673, "learning_rate": 5.043161733745163e-06, "epoch": 0.7712103488612124, "percentage": 77.13, "elapsed_time": "7:49:41", "remaining_time": "2:19:17"} +{"current_steps": 2803, "total_steps": 3633, "loss": 0.7664, "learning_rate": 5.031567717585544e-06, "epoch": 0.7714855845317553, "percentage": 77.15, "elapsed_time": "7:49:51", "remaining_time": "2:19:07"} +{"current_steps": 2804, "total_steps": 3633, "loss": 0.7615, "learning_rate": 5.019985125911899e-06, "epoch": 0.7717608202022982, "percentage": 77.18, "elapsed_time": "7:50:01", "remaining_time": "2:18:57"} +{"current_steps": 2805, "total_steps": 3633, "loss": 0.7762, "learning_rate": 5.008413967564496e-06, "epoch": 0.7720360558728411, "percentage": 77.21, "elapsed_time": "7:50:11", "remaining_time": "2:18:47"} +{"current_steps": 2806, "total_steps": 3633, "loss": 0.7698, "learning_rate": 4.996854251374901e-06, "epoch": 0.7723112915433841, "percentage": 77.24, "elapsed_time": "7:50:21", "remaining_time": "2:18:37"} +{"current_steps": 2807, "total_steps": 3633, "loss": 0.7576, "learning_rate": 4.985305986165934e-06, "epoch": 0.772586527213927, "percentage": 77.26, "elapsed_time": "7:50:32", "remaining_time": "2:18:27"} +{"current_steps": 2808, "total_steps": 3633, "loss": 0.7814, "learning_rate": 4.973769180751673e-06, "epoch": 0.7728617628844698, "percentage": 77.29, "elapsed_time": "7:50:42", "remaining_time": "2:18:17"} +{"current_steps": 2809, "total_steps": 3633, "loss": 0.7478, "learning_rate": 4.962243843937455e-06, "epoch": 0.7731369985550127, "percentage": 77.32, "elapsed_time": "7:50:52", "remaining_time": "2:18:07"} +{"current_steps": 2810, "total_steps": 3633, "loss": 0.7753, "learning_rate": 4.950729984519864e-06, "epoch": 0.7734122342255556, "percentage": 77.35, "elapsed_time": "7:51:02", "remaining_time": "2:17:57"} +{"current_steps": 2811, "total_steps": 3633, "loss": 0.7653, "learning_rate": 4.939227611286724e-06, "epoch": 0.7736874698960985, "percentage": 77.37, "elapsed_time": "7:51:12", "remaining_time": "2:17:47"} +{"current_steps": 2812, "total_steps": 3633, "loss": 0.7671, "learning_rate": 4.927736733017092e-06, "epoch": 0.7739627055666415, "percentage": 77.4, "elapsed_time": "7:51:22", "remaining_time": "2:17:37"} +{"current_steps": 2813, "total_steps": 3633, "loss": 0.7971, "learning_rate": 4.916257358481245e-06, "epoch": 0.7742379412371844, "percentage": 77.43, "elapsed_time": "7:51:32", "remaining_time": "2:17:27"} +{"current_steps": 2814, "total_steps": 3633, "loss": 0.758, "learning_rate": 4.904789496440692e-06, "epoch": 0.7745131769077273, "percentage": 77.46, "elapsed_time": "7:51:42", "remaining_time": "2:17:17"} +{"current_steps": 2815, "total_steps": 3633, "loss": 0.7874, "learning_rate": 4.893333155648136e-06, "epoch": 0.7747884125782701, "percentage": 77.48, "elapsed_time": "7:51:52", "remaining_time": "2:17:07"} +{"current_steps": 2816, "total_steps": 3633, "loss": 0.7698, "learning_rate": 4.881888344847512e-06, "epoch": 0.775063648248813, "percentage": 77.51, "elapsed_time": "7:52:02", "remaining_time": "2:16:57"} +{"current_steps": 2817, "total_steps": 3633, "loss": 0.7793, "learning_rate": 4.870455072773934e-06, "epoch": 0.7753388839193559, "percentage": 77.54, "elapsed_time": "7:52:12", "remaining_time": "2:16:47"} +{"current_steps": 2818, "total_steps": 3633, "loss": 0.8037, "learning_rate": 4.859033348153721e-06, "epoch": 0.7756141195898989, "percentage": 77.57, "elapsed_time": "7:52:22", "remaining_time": "2:16:37"} +{"current_steps": 2819, "total_steps": 3633, "loss": 0.7787, "learning_rate": 4.847623179704379e-06, "epoch": 0.7758893552604418, "percentage": 77.59, "elapsed_time": "7:52:32", "remaining_time": "2:16:26"} +{"current_steps": 2820, "total_steps": 3633, "loss": 0.7673, "learning_rate": 4.836224576134581e-06, "epoch": 0.7761645909309847, "percentage": 77.62, "elapsed_time": "7:52:42", "remaining_time": "2:16:16"} +{"current_steps": 2821, "total_steps": 3633, "loss": 0.7814, "learning_rate": 4.824837546144183e-06, "epoch": 0.7764398266015275, "percentage": 77.65, "elapsed_time": "7:52:52", "remaining_time": "2:16:06"} +{"current_steps": 2822, "total_steps": 3633, "loss": 0.7466, "learning_rate": 4.813462098424213e-06, "epoch": 0.7767150622720704, "percentage": 77.68, "elapsed_time": "7:53:02", "remaining_time": "2:15:56"} +{"current_steps": 2823, "total_steps": 3633, "loss": 0.7874, "learning_rate": 4.802098241656845e-06, "epoch": 0.7769902979426133, "percentage": 77.7, "elapsed_time": "7:53:12", "remaining_time": "2:15:46"} +{"current_steps": 2824, "total_steps": 3633, "loss": 0.7645, "learning_rate": 4.790745984515415e-06, "epoch": 0.7772655336131563, "percentage": 77.73, "elapsed_time": "7:53:22", "remaining_time": "2:15:36"} +{"current_steps": 2825, "total_steps": 3633, "loss": 0.7414, "learning_rate": 4.779405335664404e-06, "epoch": 0.7775407692836992, "percentage": 77.76, "elapsed_time": "7:53:33", "remaining_time": "2:15:26"} +{"current_steps": 2826, "total_steps": 3633, "loss": 0.7748, "learning_rate": 4.7680763037594364e-06, "epoch": 0.7778160049542421, "percentage": 77.79, "elapsed_time": "7:53:43", "remaining_time": "2:15:16"} +{"current_steps": 2827, "total_steps": 3633, "loss": 0.7961, "learning_rate": 4.7567588974472734e-06, "epoch": 0.778091240624785, "percentage": 77.81, "elapsed_time": "7:53:53", "remaining_time": "2:15:06"} +{"current_steps": 2828, "total_steps": 3633, "loss": 0.774, "learning_rate": 4.745453125365782e-06, "epoch": 0.7783664762953278, "percentage": 77.84, "elapsed_time": "7:54:03", "remaining_time": "2:14:56"} +{"current_steps": 2829, "total_steps": 3633, "loss": 0.7688, "learning_rate": 4.734158996143978e-06, "epoch": 0.7786417119658707, "percentage": 77.87, "elapsed_time": "7:54:13", "remaining_time": "2:14:46"} +{"current_steps": 2830, "total_steps": 3633, "loss": 0.7705, "learning_rate": 4.7228765184019644e-06, "epoch": 0.7789169476364137, "percentage": 77.9, "elapsed_time": "7:54:23", "remaining_time": "2:14:36"} +{"current_steps": 2831, "total_steps": 3633, "loss": 0.7574, "learning_rate": 4.711605700750972e-06, "epoch": 0.7791921833069566, "percentage": 77.92, "elapsed_time": "7:54:33", "remaining_time": "2:14:26"} +{"current_steps": 2832, "total_steps": 3633, "loss": 0.7662, "learning_rate": 4.700346551793322e-06, "epoch": 0.7794674189774995, "percentage": 77.95, "elapsed_time": "7:54:43", "remaining_time": "2:14:16"} +{"current_steps": 2833, "total_steps": 3633, "loss": 0.7715, "learning_rate": 4.689099080122434e-06, "epoch": 0.7797426546480424, "percentage": 77.98, "elapsed_time": "7:54:53", "remaining_time": "2:14:06"} +{"current_steps": 2834, "total_steps": 3633, "loss": 0.7939, "learning_rate": 4.67786329432282e-06, "epoch": 0.7800178903185853, "percentage": 78.01, "elapsed_time": "7:55:03", "remaining_time": "2:13:56"} +{"current_steps": 2835, "total_steps": 3633, "loss": 0.7752, "learning_rate": 4.666639202970049e-06, "epoch": 0.7802931259891281, "percentage": 78.03, "elapsed_time": "7:55:13", "remaining_time": "2:13:46"} +{"current_steps": 2836, "total_steps": 3633, "loss": 0.7887, "learning_rate": 4.655426814630793e-06, "epoch": 0.7805683616596711, "percentage": 78.06, "elapsed_time": "7:55:23", "remaining_time": "2:13:36"} +{"current_steps": 2837, "total_steps": 3633, "loss": 0.7685, "learning_rate": 4.644226137862782e-06, "epoch": 0.780843597330214, "percentage": 78.09, "elapsed_time": "7:55:33", "remaining_time": "2:13:25"} +{"current_steps": 2838, "total_steps": 3633, "loss": 0.7549, "learning_rate": 4.63303718121479e-06, "epoch": 0.7811188330007569, "percentage": 78.12, "elapsed_time": "7:55:43", "remaining_time": "2:13:15"} +{"current_steps": 2839, "total_steps": 3633, "loss": 0.7885, "learning_rate": 4.621859953226682e-06, "epoch": 0.7813940686712998, "percentage": 78.14, "elapsed_time": "7:55:53", "remaining_time": "2:13:05"} +{"current_steps": 2840, "total_steps": 3633, "loss": 0.7365, "learning_rate": 4.610694462429337e-06, "epoch": 0.7816693043418427, "percentage": 78.17, "elapsed_time": "7:56:03", "remaining_time": "2:12:55"} +{"current_steps": 2841, "total_steps": 3633, "loss": 0.7638, "learning_rate": 4.599540717344695e-06, "epoch": 0.7819445400123856, "percentage": 78.2, "elapsed_time": "7:56:14", "remaining_time": "2:12:45"} +{"current_steps": 2842, "total_steps": 3633, "loss": 0.75, "learning_rate": 4.588398726485719e-06, "epoch": 0.7822197756829286, "percentage": 78.23, "elapsed_time": "7:56:24", "remaining_time": "2:12:35"} +{"current_steps": 2843, "total_steps": 3633, "loss": 0.7855, "learning_rate": 4.577268498356411e-06, "epoch": 0.7824950113534714, "percentage": 78.25, "elapsed_time": "7:56:34", "remaining_time": "2:12:25"} +{"current_steps": 2844, "total_steps": 3633, "loss": 0.777, "learning_rate": 4.5661500414517955e-06, "epoch": 0.7827702470240143, "percentage": 78.28, "elapsed_time": "7:56:44", "remaining_time": "2:12:15"} +{"current_steps": 2845, "total_steps": 3633, "loss": 0.7742, "learning_rate": 4.555043364257894e-06, "epoch": 0.7830454826945572, "percentage": 78.31, "elapsed_time": "7:56:54", "remaining_time": "2:12:05"} +{"current_steps": 2846, "total_steps": 3633, "loss": 0.7553, "learning_rate": 4.543948475251772e-06, "epoch": 0.7833207183651001, "percentage": 78.34, "elapsed_time": "7:57:04", "remaining_time": "2:11:55"} +{"current_steps": 2847, "total_steps": 3633, "loss": 0.7842, "learning_rate": 4.532865382901461e-06, "epoch": 0.783595954035643, "percentage": 78.36, "elapsed_time": "7:57:14", "remaining_time": "2:11:45"} +{"current_steps": 2848, "total_steps": 3633, "loss": 0.7815, "learning_rate": 4.521794095666013e-06, "epoch": 0.783871189706186, "percentage": 78.39, "elapsed_time": "7:57:24", "remaining_time": "2:11:35"} +{"current_steps": 2849, "total_steps": 3633, "loss": 0.7895, "learning_rate": 4.510734621995465e-06, "epoch": 0.7841464253767289, "percentage": 78.42, "elapsed_time": "7:57:34", "remaining_time": "2:11:25"} +{"current_steps": 2850, "total_steps": 3633, "loss": 0.7634, "learning_rate": 4.499686970330825e-06, "epoch": 0.7844216610472717, "percentage": 78.45, "elapsed_time": "7:57:44", "remaining_time": "2:11:15"} +{"current_steps": 2851, "total_steps": 3633, "loss": 0.7564, "learning_rate": 4.4886511491041e-06, "epoch": 0.7846968967178146, "percentage": 78.48, "elapsed_time": "7:57:54", "remaining_time": "2:11:05"} +{"current_steps": 2852, "total_steps": 3633, "loss": 0.7537, "learning_rate": 4.4776271667382364e-06, "epoch": 0.7849721323883575, "percentage": 78.5, "elapsed_time": "7:58:04", "remaining_time": "2:10:55"} +{"current_steps": 2853, "total_steps": 3633, "loss": 0.7715, "learning_rate": 4.466615031647188e-06, "epoch": 0.7852473680589004, "percentage": 78.53, "elapsed_time": "7:58:14", "remaining_time": "2:10:45"} +{"current_steps": 2854, "total_steps": 3633, "loss": 0.7783, "learning_rate": 4.455614752235824e-06, "epoch": 0.7855226037294434, "percentage": 78.56, "elapsed_time": "7:58:24", "remaining_time": "2:10:34"} +{"current_steps": 2855, "total_steps": 3633, "loss": 0.7697, "learning_rate": 4.4446263368999865e-06, "epoch": 0.7857978393999863, "percentage": 78.59, "elapsed_time": "7:58:34", "remaining_time": "2:10:24"} +{"current_steps": 2856, "total_steps": 3633, "loss": 0.7488, "learning_rate": 4.433649794026467e-06, "epoch": 0.7860730750705291, "percentage": 78.61, "elapsed_time": "7:58:44", "remaining_time": "2:10:14"} +{"current_steps": 2857, "total_steps": 3633, "loss": 0.777, "learning_rate": 4.422685131992975e-06, "epoch": 0.786348310741072, "percentage": 78.64, "elapsed_time": "7:58:55", "remaining_time": "2:10:04"} +{"current_steps": 2858, "total_steps": 3633, "loss": 0.8007, "learning_rate": 4.411732359168168e-06, "epoch": 0.7866235464116149, "percentage": 78.67, "elapsed_time": "7:59:05", "remaining_time": "2:09:54"} +{"current_steps": 2859, "total_steps": 3633, "loss": 0.7592, "learning_rate": 4.40079148391163e-06, "epoch": 0.7868987820821578, "percentage": 78.7, "elapsed_time": "7:59:15", "remaining_time": "2:09:44"} +{"current_steps": 2860, "total_steps": 3633, "loss": 0.7657, "learning_rate": 4.3898625145738575e-06, "epoch": 0.7871740177527008, "percentage": 78.72, "elapsed_time": "7:59:25", "remaining_time": "2:09:34"} +{"current_steps": 2861, "total_steps": 3633, "loss": 0.7572, "learning_rate": 4.378945459496264e-06, "epoch": 0.7874492534232437, "percentage": 78.75, "elapsed_time": "7:59:35", "remaining_time": "2:09:24"} +{"current_steps": 2862, "total_steps": 3633, "loss": 0.7365, "learning_rate": 4.3680403270111645e-06, "epoch": 0.7877244890937866, "percentage": 78.78, "elapsed_time": "7:59:45", "remaining_time": "2:09:14"} +{"current_steps": 2863, "total_steps": 3633, "loss": 0.7647, "learning_rate": 4.357147125441783e-06, "epoch": 0.7879997247643294, "percentage": 78.81, "elapsed_time": "7:59:55", "remaining_time": "2:09:04"} +{"current_steps": 2864, "total_steps": 3633, "loss": 0.7365, "learning_rate": 4.346265863102221e-06, "epoch": 0.7882749604348723, "percentage": 78.83, "elapsed_time": "8:00:05", "remaining_time": "2:08:54"} +{"current_steps": 2865, "total_steps": 3633, "loss": 0.7513, "learning_rate": 4.335396548297485e-06, "epoch": 0.7885501961054152, "percentage": 78.86, "elapsed_time": "8:00:15", "remaining_time": "2:08:44"} +{"current_steps": 2866, "total_steps": 3633, "loss": 0.747, "learning_rate": 4.324539189323458e-06, "epoch": 0.7888254317759582, "percentage": 78.89, "elapsed_time": "8:00:25", "remaining_time": "2:08:34"} +{"current_steps": 2867, "total_steps": 3633, "loss": 0.7486, "learning_rate": 4.313693794466893e-06, "epoch": 0.7891006674465011, "percentage": 78.92, "elapsed_time": "8:00:35", "remaining_time": "2:08:24"} +{"current_steps": 2868, "total_steps": 3633, "loss": 0.7766, "learning_rate": 4.302860372005422e-06, "epoch": 0.789375903117044, "percentage": 78.94, "elapsed_time": "8:00:45", "remaining_time": "2:08:14"} +{"current_steps": 2869, "total_steps": 3633, "loss": 0.7764, "learning_rate": 4.292038930207518e-06, "epoch": 0.7896511387875869, "percentage": 78.97, "elapsed_time": "8:00:55", "remaining_time": "2:08:04"} +{"current_steps": 2870, "total_steps": 3633, "loss": 0.7685, "learning_rate": 4.281229477332534e-06, "epoch": 0.7899263744581297, "percentage": 79.0, "elapsed_time": "8:01:05", "remaining_time": "2:07:54"} +{"current_steps": 2871, "total_steps": 3633, "loss": 0.7638, "learning_rate": 4.270432021630662e-06, "epoch": 0.7902016101286726, "percentage": 79.03, "elapsed_time": "8:01:15", "remaining_time": "2:07:43"} +{"current_steps": 2872, "total_steps": 3633, "loss": 0.7851, "learning_rate": 4.25964657134293e-06, "epoch": 0.7904768457992156, "percentage": 79.05, "elapsed_time": "8:01:25", "remaining_time": "2:07:33"} +{"current_steps": 2873, "total_steps": 3633, "loss": 0.7702, "learning_rate": 4.248873134701215e-06, "epoch": 0.7907520814697585, "percentage": 79.08, "elapsed_time": "8:01:35", "remaining_time": "2:07:23"} +{"current_steps": 2874, "total_steps": 3633, "loss": 0.7739, "learning_rate": 4.238111719928219e-06, "epoch": 0.7910273171403014, "percentage": 79.11, "elapsed_time": "8:01:45", "remaining_time": "2:07:13"} +{"current_steps": 2875, "total_steps": 3633, "loss": 0.7425, "learning_rate": 4.227362335237472e-06, "epoch": 0.7913025528108443, "percentage": 79.14, "elapsed_time": "8:01:56", "remaining_time": "2:07:03"} +{"current_steps": 2876, "total_steps": 3633, "loss": 0.8108, "learning_rate": 4.216624988833326e-06, "epoch": 0.7915777884813872, "percentage": 79.16, "elapsed_time": "8:02:06", "remaining_time": "2:06:53"} +{"current_steps": 2877, "total_steps": 3633, "loss": 0.7767, "learning_rate": 4.205899688910924e-06, "epoch": 0.79185302415193, "percentage": 79.19, "elapsed_time": "8:02:16", "remaining_time": "2:06:43"} +{"current_steps": 2878, "total_steps": 3633, "loss": 0.7623, "learning_rate": 4.195186443656241e-06, "epoch": 0.792128259822473, "percentage": 79.22, "elapsed_time": "8:02:26", "remaining_time": "2:06:33"} +{"current_steps": 2879, "total_steps": 3633, "loss": 0.7968, "learning_rate": 4.184485261246032e-06, "epoch": 0.7924034954930159, "percentage": 79.25, "elapsed_time": "8:02:36", "remaining_time": "2:06:23"} +{"current_steps": 2880, "total_steps": 3633, "loss": 0.7875, "learning_rate": 4.1737961498478555e-06, "epoch": 0.7926787311635588, "percentage": 79.27, "elapsed_time": "8:02:46", "remaining_time": "2:06:13"} +{"current_steps": 2881, "total_steps": 3633, "loss": 0.7842, "learning_rate": 4.163119117620056e-06, "epoch": 0.7929539668341017, "percentage": 79.3, "elapsed_time": "8:02:56", "remaining_time": "2:06:03"} +{"current_steps": 2882, "total_steps": 3633, "loss": 0.7758, "learning_rate": 4.152454172711755e-06, "epoch": 0.7932292025046446, "percentage": 79.33, "elapsed_time": "8:03:06", "remaining_time": "2:05:53"} +{"current_steps": 2883, "total_steps": 3633, "loss": 0.7941, "learning_rate": 4.141801323262858e-06, "epoch": 0.7935044381751875, "percentage": 79.36, "elapsed_time": "8:03:16", "remaining_time": "2:05:43"} +{"current_steps": 2884, "total_steps": 3633, "loss": 0.7798, "learning_rate": 4.131160577404021e-06, "epoch": 0.7937796738457304, "percentage": 79.38, "elapsed_time": "8:03:26", "remaining_time": "2:05:33"} +{"current_steps": 2885, "total_steps": 3633, "loss": 0.7664, "learning_rate": 4.120531943256676e-06, "epoch": 0.7940549095162733, "percentage": 79.41, "elapsed_time": "8:03:36", "remaining_time": "2:05:23"} +{"current_steps": 2886, "total_steps": 3633, "loss": 0.7962, "learning_rate": 4.1099154289330134e-06, "epoch": 0.7943301451868162, "percentage": 79.44, "elapsed_time": "8:03:46", "remaining_time": "2:05:13"} +{"current_steps": 2887, "total_steps": 3633, "loss": 0.7696, "learning_rate": 4.099311042535956e-06, "epoch": 0.7946053808573591, "percentage": 79.47, "elapsed_time": "8:03:56", "remaining_time": "2:05:03"} +{"current_steps": 2888, "total_steps": 3633, "loss": 0.749, "learning_rate": 4.08871879215919e-06, "epoch": 0.794880616527902, "percentage": 79.49, "elapsed_time": "8:04:06", "remaining_time": "2:04:52"} +{"current_steps": 2889, "total_steps": 3633, "loss": 0.7773, "learning_rate": 4.078138685887125e-06, "epoch": 0.7951558521984449, "percentage": 79.52, "elapsed_time": "8:04:16", "remaining_time": "2:04:42"} +{"current_steps": 2890, "total_steps": 3633, "loss": 0.7435, "learning_rate": 4.067570731794915e-06, "epoch": 0.7954310878689879, "percentage": 79.55, "elapsed_time": "8:04:26", "remaining_time": "2:04:32"} +{"current_steps": 2891, "total_steps": 3633, "loss": 0.7497, "learning_rate": 4.05701493794842e-06, "epoch": 0.7957063235395307, "percentage": 79.58, "elapsed_time": "8:04:36", "remaining_time": "2:04:22"} +{"current_steps": 2892, "total_steps": 3633, "loss": 0.7549, "learning_rate": 4.0464713124042366e-06, "epoch": 0.7959815592100736, "percentage": 79.6, "elapsed_time": "8:04:46", "remaining_time": "2:04:12"} +{"current_steps": 2893, "total_steps": 3633, "loss": 0.7681, "learning_rate": 4.03593986320967e-06, "epoch": 0.7962567948806165, "percentage": 79.63, "elapsed_time": "8:04:56", "remaining_time": "2:04:02"} +{"current_steps": 2894, "total_steps": 3633, "loss": 0.7827, "learning_rate": 4.025420598402721e-06, "epoch": 0.7965320305511594, "percentage": 79.66, "elapsed_time": "8:05:06", "remaining_time": "2:03:52"} +{"current_steps": 2895, "total_steps": 3633, "loss": 0.763, "learning_rate": 4.014913526012103e-06, "epoch": 0.7968072662217023, "percentage": 79.69, "elapsed_time": "8:05:17", "remaining_time": "2:03:42"} +{"current_steps": 2896, "total_steps": 3633, "loss": 0.7448, "learning_rate": 4.004418654057218e-06, "epoch": 0.7970825018922453, "percentage": 79.71, "elapsed_time": "8:05:27", "remaining_time": "2:03:32"} +{"current_steps": 2897, "total_steps": 3633, "loss": 0.7554, "learning_rate": 3.993935990548161e-06, "epoch": 0.7973577375627882, "percentage": 79.74, "elapsed_time": "8:05:37", "remaining_time": "2:03:22"} +{"current_steps": 2898, "total_steps": 3633, "loss": 0.7949, "learning_rate": 3.983465543485709e-06, "epoch": 0.797632973233331, "percentage": 79.77, "elapsed_time": "8:05:47", "remaining_time": "2:03:12"} +{"current_steps": 2899, "total_steps": 3633, "loss": 0.7781, "learning_rate": 3.973007320861304e-06, "epoch": 0.7979082089038739, "percentage": 79.8, "elapsed_time": "8:05:57", "remaining_time": "2:03:02"} +{"current_steps": 2900, "total_steps": 3633, "loss": 0.7555, "learning_rate": 3.962561330657073e-06, "epoch": 0.7981834445744168, "percentage": 79.82, "elapsed_time": "8:06:07", "remaining_time": "2:02:52"} +{"current_steps": 2901, "total_steps": 3633, "loss": 0.7622, "learning_rate": 3.952127580845791e-06, "epoch": 0.7984586802449597, "percentage": 79.85, "elapsed_time": "8:06:17", "remaining_time": "2:02:42"} +{"current_steps": 2902, "total_steps": 3633, "loss": 0.7719, "learning_rate": 3.941706079390897e-06, "epoch": 0.7987339159155027, "percentage": 79.88, "elapsed_time": "8:06:27", "remaining_time": "2:02:32"} +{"current_steps": 2903, "total_steps": 3633, "loss": 0.767, "learning_rate": 3.931296834246501e-06, "epoch": 0.7990091515860456, "percentage": 79.91, "elapsed_time": "8:06:37", "remaining_time": "2:02:22"} +{"current_steps": 2904, "total_steps": 3633, "loss": 0.7584, "learning_rate": 3.920899853357325e-06, "epoch": 0.7992843872565885, "percentage": 79.93, "elapsed_time": "8:06:47", "remaining_time": "2:02:12"} +{"current_steps": 2905, "total_steps": 3633, "loss": 0.7867, "learning_rate": 3.910515144658758e-06, "epoch": 0.7995596229271313, "percentage": 79.96, "elapsed_time": "8:06:57", "remaining_time": "2:02:01"} +{"current_steps": 2906, "total_steps": 3633, "loss": 0.769, "learning_rate": 3.9001427160768e-06, "epoch": 0.7998348585976742, "percentage": 79.99, "elapsed_time": "8:07:07", "remaining_time": "2:01:51"} +{"current_steps": 2907, "total_steps": 3633, "loss": 0.7565, "learning_rate": 3.889782575528094e-06, "epoch": 0.8001100942682171, "percentage": 80.02, "elapsed_time": "8:07:17", "remaining_time": "2:01:41"} +{"current_steps": 2908, "total_steps": 3633, "loss": 0.7786, "learning_rate": 3.879434730919904e-06, "epoch": 0.8003853299387601, "percentage": 80.04, "elapsed_time": "8:07:27", "remaining_time": "2:01:31"} +{"current_steps": 2909, "total_steps": 3633, "loss": 0.7768, "learning_rate": 3.86909919015009e-06, "epoch": 0.800660565609303, "percentage": 80.07, "elapsed_time": "8:07:37", "remaining_time": "2:01:21"} +{"current_steps": 2910, "total_steps": 3633, "loss": 0.7799, "learning_rate": 3.858775961107157e-06, "epoch": 0.8009358012798459, "percentage": 80.1, "elapsed_time": "8:07:47", "remaining_time": "2:01:11"} +{"current_steps": 2911, "total_steps": 3633, "loss": 0.7875, "learning_rate": 3.8484650516701784e-06, "epoch": 0.8012110369503888, "percentage": 80.13, "elapsed_time": "8:07:57", "remaining_time": "2:01:01"} +{"current_steps": 2912, "total_steps": 3633, "loss": 0.7735, "learning_rate": 3.838166469708844e-06, "epoch": 0.8014862726209316, "percentage": 80.15, "elapsed_time": "8:08:07", "remaining_time": "2:00:51"} +{"current_steps": 2913, "total_steps": 3633, "loss": 0.7998, "learning_rate": 3.827880223083431e-06, "epoch": 0.8017615082914745, "percentage": 80.18, "elapsed_time": "8:08:17", "remaining_time": "2:00:41"} +{"current_steps": 2914, "total_steps": 3633, "loss": 0.7681, "learning_rate": 3.817606319644793e-06, "epoch": 0.8020367439620175, "percentage": 80.21, "elapsed_time": "8:08:27", "remaining_time": "2:00:31"} +{"current_steps": 2915, "total_steps": 3633, "loss": 0.7863, "learning_rate": 3.8073447672343798e-06, "epoch": 0.8023119796325604, "percentage": 80.24, "elapsed_time": "8:08:37", "remaining_time": "2:00:21"} +{"current_steps": 2916, "total_steps": 3633, "loss": 0.7454, "learning_rate": 3.7970955736841887e-06, "epoch": 0.8025872153031033, "percentage": 80.26, "elapsed_time": "8:08:47", "remaining_time": "2:00:11"} +{"current_steps": 2917, "total_steps": 3633, "loss": 0.7501, "learning_rate": 3.7868587468168216e-06, "epoch": 0.8028624509736462, "percentage": 80.29, "elapsed_time": "8:08:57", "remaining_time": "2:00:01"} +{"current_steps": 2918, "total_steps": 3633, "loss": 0.7949, "learning_rate": 3.7766342944454047e-06, "epoch": 0.803137686644189, "percentage": 80.32, "elapsed_time": "8:09:07", "remaining_time": "1:59:51"} +{"current_steps": 2919, "total_steps": 3633, "loss": 0.7631, "learning_rate": 3.7664222243736404e-06, "epoch": 0.8034129223147319, "percentage": 80.35, "elapsed_time": "8:09:17", "remaining_time": "1:59:40"} +{"current_steps": 2920, "total_steps": 3633, "loss": 0.7485, "learning_rate": 3.75622254439578e-06, "epoch": 0.8036881579852749, "percentage": 80.37, "elapsed_time": "8:09:27", "remaining_time": "1:59:30"} +{"current_steps": 2921, "total_steps": 3633, "loss": 0.7716, "learning_rate": 3.7460352622966034e-06, "epoch": 0.8039633936558178, "percentage": 80.4, "elapsed_time": "8:09:37", "remaining_time": "1:59:20"} +{"current_steps": 2922, "total_steps": 3633, "loss": 0.7834, "learning_rate": 3.735860385851444e-06, "epoch": 0.8042386293263607, "percentage": 80.43, "elapsed_time": "8:09:47", "remaining_time": "1:59:10"} +{"current_steps": 2923, "total_steps": 3633, "loss": 0.7574, "learning_rate": 3.725697922826166e-06, "epoch": 0.8045138649969036, "percentage": 80.46, "elapsed_time": "8:09:57", "remaining_time": "1:59:00"} +{"current_steps": 2924, "total_steps": 3633, "loss": 0.7621, "learning_rate": 3.715547880977135e-06, "epoch": 0.8047891006674465, "percentage": 80.48, "elapsed_time": "8:10:07", "remaining_time": "1:58:50"} +{"current_steps": 2925, "total_steps": 3633, "loss": 0.7787, "learning_rate": 3.7054102680512795e-06, "epoch": 0.8050643363379894, "percentage": 80.51, "elapsed_time": "8:10:17", "remaining_time": "1:58:40"} +{"current_steps": 2926, "total_steps": 3633, "loss": 0.7663, "learning_rate": 3.6952850917860007e-06, "epoch": 0.8053395720085323, "percentage": 80.54, "elapsed_time": "8:10:27", "remaining_time": "1:58:30"} +{"current_steps": 2927, "total_steps": 3633, "loss": 0.7695, "learning_rate": 3.685172359909235e-06, "epoch": 0.8056148076790752, "percentage": 80.57, "elapsed_time": "8:10:37", "remaining_time": "1:58:20"} +{"current_steps": 2928, "total_steps": 3633, "loss": 0.7787, "learning_rate": 3.6750720801394014e-06, "epoch": 0.8058900433496181, "percentage": 80.59, "elapsed_time": "8:10:47", "remaining_time": "1:58:10"} +{"current_steps": 2929, "total_steps": 3633, "loss": 0.7661, "learning_rate": 3.6649842601854245e-06, "epoch": 0.806165279020161, "percentage": 80.62, "elapsed_time": "8:10:57", "remaining_time": "1:58:00"} +{"current_steps": 2930, "total_steps": 3633, "loss": 0.7669, "learning_rate": 3.6549089077467258e-06, "epoch": 0.8064405146907039, "percentage": 80.65, "elapsed_time": "8:11:07", "remaining_time": "1:57:50"} +{"current_steps": 2931, "total_steps": 3633, "loss": 0.7657, "learning_rate": 3.6448460305131916e-06, "epoch": 0.8067157503612468, "percentage": 80.68, "elapsed_time": "8:11:17", "remaining_time": "1:57:40"} +{"current_steps": 2932, "total_steps": 3633, "loss": 0.7557, "learning_rate": 3.6347956361652135e-06, "epoch": 0.8069909860317898, "percentage": 80.7, "elapsed_time": "8:11:27", "remaining_time": "1:57:30"} +{"current_steps": 2933, "total_steps": 3633, "loss": 0.7351, "learning_rate": 3.624757732373629e-06, "epoch": 0.8072662217023326, "percentage": 80.73, "elapsed_time": "8:11:37", "remaining_time": "1:57:19"} +{"current_steps": 2934, "total_steps": 3633, "loss": 0.7553, "learning_rate": 3.6147323267997592e-06, "epoch": 0.8075414573728755, "percentage": 80.76, "elapsed_time": "8:11:47", "remaining_time": "1:57:09"} +{"current_steps": 2935, "total_steps": 3633, "loss": 0.7664, "learning_rate": 3.6047194270953846e-06, "epoch": 0.8078166930434184, "percentage": 80.79, "elapsed_time": "8:11:57", "remaining_time": "1:56:59"} +{"current_steps": 2936, "total_steps": 3633, "loss": 0.7646, "learning_rate": 3.5947190409027276e-06, "epoch": 0.8080919287139613, "percentage": 80.81, "elapsed_time": "8:12:07", "remaining_time": "1:56:49"} +{"current_steps": 2937, "total_steps": 3633, "loss": 0.7921, "learning_rate": 3.584731175854479e-06, "epoch": 0.8083671643845042, "percentage": 80.84, "elapsed_time": "8:12:17", "remaining_time": "1:56:39"} +{"current_steps": 2938, "total_steps": 3633, "loss": 0.7665, "learning_rate": 3.5747558395737493e-06, "epoch": 0.8086424000550472, "percentage": 80.87, "elapsed_time": "8:12:27", "remaining_time": "1:56:29"} +{"current_steps": 2939, "total_steps": 3633, "loss": 0.7552, "learning_rate": 3.5647930396741213e-06, "epoch": 0.8089176357255901, "percentage": 80.9, "elapsed_time": "8:12:37", "remaining_time": "1:56:19"} +{"current_steps": 2940, "total_steps": 3633, "loss": 0.8127, "learning_rate": 3.5548427837595735e-06, "epoch": 0.8091928713961329, "percentage": 80.92, "elapsed_time": "8:12:47", "remaining_time": "1:56:09"} +{"current_steps": 2941, "total_steps": 3633, "loss": 0.7876, "learning_rate": 3.54490507942453e-06, "epoch": 0.8094681070666758, "percentage": 80.95, "elapsed_time": "8:12:57", "remaining_time": "1:55:59"} +{"current_steps": 2942, "total_steps": 3633, "loss": 0.7555, "learning_rate": 3.534979934253835e-06, "epoch": 0.8097433427372187, "percentage": 80.98, "elapsed_time": "8:13:07", "remaining_time": "1:55:49"} +{"current_steps": 2943, "total_steps": 3633, "loss": 0.786, "learning_rate": 3.5250673558227356e-06, "epoch": 0.8100185784077616, "percentage": 81.01, "elapsed_time": "8:13:17", "remaining_time": "1:55:39"} +{"current_steps": 2944, "total_steps": 3633, "loss": 0.7912, "learning_rate": 3.5151673516968956e-06, "epoch": 0.8102938140783046, "percentage": 81.03, "elapsed_time": "8:13:27", "remaining_time": "1:55:29"} +{"current_steps": 2945, "total_steps": 3633, "loss": 0.7623, "learning_rate": 3.505279929432386e-06, "epoch": 0.8105690497488475, "percentage": 81.06, "elapsed_time": "8:13:37", "remaining_time": "1:55:19"} +{"current_steps": 2946, "total_steps": 3633, "loss": 0.7666, "learning_rate": 3.495405096575664e-06, "epoch": 0.8108442854193904, "percentage": 81.09, "elapsed_time": "8:13:47", "remaining_time": "1:55:09"} +{"current_steps": 2947, "total_steps": 3633, "loss": 0.783, "learning_rate": 3.485542860663593e-06, "epoch": 0.8111195210899332, "percentage": 81.12, "elapsed_time": "8:13:57", "remaining_time": "1:54:59"} +{"current_steps": 2948, "total_steps": 3633, "loss": 0.7949, "learning_rate": 3.4756932292234e-06, "epoch": 0.8113947567604761, "percentage": 81.15, "elapsed_time": "8:14:07", "remaining_time": "1:54:48"} +{"current_steps": 2949, "total_steps": 3633, "loss": 0.7643, "learning_rate": 3.4658562097727177e-06, "epoch": 0.811669992431019, "percentage": 81.17, "elapsed_time": "8:14:17", "remaining_time": "1:54:38"} +{"current_steps": 2950, "total_steps": 3633, "loss": 0.7589, "learning_rate": 3.4560318098195244e-06, "epoch": 0.811945228101562, "percentage": 81.2, "elapsed_time": "8:14:27", "remaining_time": "1:54:28"} +{"current_steps": 2951, "total_steps": 3633, "loss": 0.752, "learning_rate": 3.446220036862191e-06, "epoch": 0.8122204637721049, "percentage": 81.23, "elapsed_time": "8:14:37", "remaining_time": "1:54:18"} +{"current_steps": 2952, "total_steps": 3633, "loss": 0.7522, "learning_rate": 3.4364208983894387e-06, "epoch": 0.8124956994426478, "percentage": 81.26, "elapsed_time": "8:14:47", "remaining_time": "1:54:08"} +{"current_steps": 2953, "total_steps": 3633, "loss": 0.7498, "learning_rate": 3.426634401880351e-06, "epoch": 0.8127709351131907, "percentage": 81.28, "elapsed_time": "8:14:58", "remaining_time": "1:53:58"} +{"current_steps": 2954, "total_steps": 3633, "loss": 0.7576, "learning_rate": 3.4168605548043663e-06, "epoch": 0.8130461707837335, "percentage": 81.31, "elapsed_time": "8:15:08", "remaining_time": "1:53:48"} +{"current_steps": 2955, "total_steps": 3633, "loss": 0.7483, "learning_rate": 3.4070993646212493e-06, "epoch": 0.8133214064542764, "percentage": 81.34, "elapsed_time": "8:15:18", "remaining_time": "1:53:38"} +{"current_steps": 2956, "total_steps": 3633, "loss": 0.7859, "learning_rate": 3.3973508387811237e-06, "epoch": 0.8135966421248194, "percentage": 81.37, "elapsed_time": "8:15:28", "remaining_time": "1:53:28"} +{"current_steps": 2957, "total_steps": 3633, "loss": 0.7431, "learning_rate": 3.3876149847244454e-06, "epoch": 0.8138718777953623, "percentage": 81.39, "elapsed_time": "8:15:38", "remaining_time": "1:53:18"} +{"current_steps": 2958, "total_steps": 3633, "loss": 0.7834, "learning_rate": 3.377891809881986e-06, "epoch": 0.8141471134659052, "percentage": 81.42, "elapsed_time": "8:15:48", "remaining_time": "1:53:08"} +{"current_steps": 2959, "total_steps": 3633, "loss": 0.7731, "learning_rate": 3.368181321674853e-06, "epoch": 0.8144223491364481, "percentage": 81.45, "elapsed_time": "8:15:58", "remaining_time": "1:52:58"} +{"current_steps": 2960, "total_steps": 3633, "loss": 0.7895, "learning_rate": 3.3584835275144647e-06, "epoch": 0.814697584806991, "percentage": 81.48, "elapsed_time": "8:16:08", "remaining_time": "1:52:48"} +{"current_steps": 2961, "total_steps": 3633, "loss": 0.7944, "learning_rate": 3.348798434802556e-06, "epoch": 0.8149728204775339, "percentage": 81.5, "elapsed_time": "8:16:18", "remaining_time": "1:52:38"} +{"current_steps": 2962, "total_steps": 3633, "loss": 0.7733, "learning_rate": 3.339126050931165e-06, "epoch": 0.8152480561480768, "percentage": 81.53, "elapsed_time": "8:16:28", "remaining_time": "1:52:28"} +{"current_steps": 2963, "total_steps": 3633, "loss": 0.7636, "learning_rate": 3.3294663832826204e-06, "epoch": 0.8155232918186197, "percentage": 81.56, "elapsed_time": "8:16:38", "remaining_time": "1:52:18"} +{"current_steps": 2964, "total_steps": 3633, "loss": 0.7929, "learning_rate": 3.3198194392295636e-06, "epoch": 0.8157985274891626, "percentage": 81.59, "elapsed_time": "8:16:48", "remaining_time": "1:52:08"} +{"current_steps": 2965, "total_steps": 3633, "loss": 0.7771, "learning_rate": 3.3101852261349053e-06, "epoch": 0.8160737631597055, "percentage": 81.61, "elapsed_time": "8:16:58", "remaining_time": "1:51:58"} +{"current_steps": 2966, "total_steps": 3633, "loss": 0.7604, "learning_rate": 3.300563751351855e-06, "epoch": 0.8163489988302484, "percentage": 81.64, "elapsed_time": "8:17:08", "remaining_time": "1:51:47"} +{"current_steps": 2967, "total_steps": 3633, "loss": 0.7797, "learning_rate": 3.2909550222238916e-06, "epoch": 0.8166242345007914, "percentage": 81.67, "elapsed_time": "8:17:18", "remaining_time": "1:51:37"} +{"current_steps": 2968, "total_steps": 3633, "loss": 0.7804, "learning_rate": 3.281359046084771e-06, "epoch": 0.8168994701713342, "percentage": 81.7, "elapsed_time": "8:17:28", "remaining_time": "1:51:27"} +{"current_steps": 2969, "total_steps": 3633, "loss": 0.7388, "learning_rate": 3.271775830258519e-06, "epoch": 0.8171747058418771, "percentage": 81.72, "elapsed_time": "8:17:39", "remaining_time": "1:51:17"} +{"current_steps": 2970, "total_steps": 3633, "loss": 0.773, "learning_rate": 3.2622053820594025e-06, "epoch": 0.81744994151242, "percentage": 81.75, "elapsed_time": "8:17:49", "remaining_time": "1:51:07"} +{"current_steps": 2971, "total_steps": 3633, "loss": 0.8166, "learning_rate": 3.252647708791965e-06, "epoch": 0.8177251771829629, "percentage": 81.78, "elapsed_time": "8:17:59", "remaining_time": "1:50:57"} +{"current_steps": 2972, "total_steps": 3633, "loss": 0.7912, "learning_rate": 3.243102817750996e-06, "epoch": 0.8180004128535058, "percentage": 81.81, "elapsed_time": "8:18:09", "remaining_time": "1:50:47"} +{"current_steps": 2973, "total_steps": 3633, "loss": 0.7467, "learning_rate": 3.233570716221517e-06, "epoch": 0.8182756485240488, "percentage": 81.83, "elapsed_time": "8:18:19", "remaining_time": "1:50:37"} +{"current_steps": 2974, "total_steps": 3633, "loss": 0.7426, "learning_rate": 3.224051411478799e-06, "epoch": 0.8185508841945917, "percentage": 81.86, "elapsed_time": "8:18:29", "remaining_time": "1:50:27"} +{"current_steps": 2975, "total_steps": 3633, "loss": 0.7794, "learning_rate": 3.214544910788344e-06, "epoch": 0.8188261198651345, "percentage": 81.89, "elapsed_time": "8:18:39", "remaining_time": "1:50:17"} +{"current_steps": 2976, "total_steps": 3633, "loss": 0.7627, "learning_rate": 3.205051221405886e-06, "epoch": 0.8191013555356774, "percentage": 81.92, "elapsed_time": "8:18:49", "remaining_time": "1:50:07"} +{"current_steps": 2977, "total_steps": 3633, "loss": 0.7879, "learning_rate": 3.195570350577366e-06, "epoch": 0.8193765912062203, "percentage": 81.94, "elapsed_time": "8:18:59", "remaining_time": "1:49:57"} +{"current_steps": 2978, "total_steps": 3633, "loss": 0.7984, "learning_rate": 3.186102305538956e-06, "epoch": 0.8196518268767632, "percentage": 81.97, "elapsed_time": "8:19:09", "remaining_time": "1:49:47"} +{"current_steps": 2979, "total_steps": 3633, "loss": 0.7782, "learning_rate": 3.176647093517038e-06, "epoch": 0.8199270625473062, "percentage": 82.0, "elapsed_time": "8:19:19", "remaining_time": "1:49:37"} +{"current_steps": 2980, "total_steps": 3633, "loss": 0.783, "learning_rate": 3.1672047217281853e-06, "epoch": 0.8202022982178491, "percentage": 82.03, "elapsed_time": "8:19:29", "remaining_time": "1:49:27"} +{"current_steps": 2981, "total_steps": 3633, "loss": 0.7688, "learning_rate": 3.157775197379187e-06, "epoch": 0.820477533888392, "percentage": 82.05, "elapsed_time": "8:19:39", "remaining_time": "1:49:17"} +{"current_steps": 2982, "total_steps": 3633, "loss": 0.7796, "learning_rate": 3.148358527667019e-06, "epoch": 0.8207527695589348, "percentage": 82.08, "elapsed_time": "8:19:49", "remaining_time": "1:49:07"} +{"current_steps": 2983, "total_steps": 3633, "loss": 0.7783, "learning_rate": 3.138954719778848e-06, "epoch": 0.8210280052294777, "percentage": 82.11, "elapsed_time": "8:19:59", "remaining_time": "1:48:57"} +{"current_steps": 2984, "total_steps": 3633, "loss": 0.7714, "learning_rate": 3.1295637808920286e-06, "epoch": 0.8213032409000206, "percentage": 82.14, "elapsed_time": "8:20:09", "remaining_time": "1:48:46"} +{"current_steps": 2985, "total_steps": 3633, "loss": 0.7644, "learning_rate": 3.1201857181740804e-06, "epoch": 0.8215784765705636, "percentage": 82.16, "elapsed_time": "8:20:19", "remaining_time": "1:48:36"} +{"current_steps": 2986, "total_steps": 3633, "loss": 0.7828, "learning_rate": 3.1108205387827085e-06, "epoch": 0.8218537122411065, "percentage": 82.19, "elapsed_time": "8:20:30", "remaining_time": "1:48:26"} +{"current_steps": 2987, "total_steps": 3633, "loss": 0.7583, "learning_rate": 3.1014682498657733e-06, "epoch": 0.8221289479116494, "percentage": 82.22, "elapsed_time": "8:20:40", "remaining_time": "1:48:16"} +{"current_steps": 2988, "total_steps": 3633, "loss": 0.7742, "learning_rate": 3.0921288585613053e-06, "epoch": 0.8224041835821922, "percentage": 82.25, "elapsed_time": "8:20:50", "remaining_time": "1:48:06"} +{"current_steps": 2989, "total_steps": 3633, "loss": 0.7888, "learning_rate": 3.0828023719974975e-06, "epoch": 0.8226794192527351, "percentage": 82.27, "elapsed_time": "8:21:00", "remaining_time": "1:47:56"} +{"current_steps": 2990, "total_steps": 3633, "loss": 0.7444, "learning_rate": 3.0734887972926764e-06, "epoch": 0.822954654923278, "percentage": 82.3, "elapsed_time": "8:21:10", "remaining_time": "1:47:46"} +{"current_steps": 2991, "total_steps": 3633, "loss": 0.773, "learning_rate": 3.0641881415553266e-06, "epoch": 0.823229890593821, "percentage": 82.33, "elapsed_time": "8:21:20", "remaining_time": "1:47:36"} +{"current_steps": 2992, "total_steps": 3633, "loss": 0.771, "learning_rate": 3.0549004118840606e-06, "epoch": 0.8235051262643639, "percentage": 82.36, "elapsed_time": "8:21:30", "remaining_time": "1:47:26"} +{"current_steps": 2993, "total_steps": 3633, "loss": 0.7506, "learning_rate": 3.0456256153676402e-06, "epoch": 0.8237803619349068, "percentage": 82.38, "elapsed_time": "8:21:40", "remaining_time": "1:47:16"} +{"current_steps": 2994, "total_steps": 3633, "loss": 0.7926, "learning_rate": 3.0363637590849483e-06, "epoch": 0.8240555976054497, "percentage": 82.41, "elapsed_time": "8:21:50", "remaining_time": "1:47:06"} +{"current_steps": 2995, "total_steps": 3633, "loss": 0.7925, "learning_rate": 3.0271148501049796e-06, "epoch": 0.8243308332759925, "percentage": 82.44, "elapsed_time": "8:22:00", "remaining_time": "1:46:56"} +{"current_steps": 2996, "total_steps": 3633, "loss": 0.7967, "learning_rate": 3.0178788954868764e-06, "epoch": 0.8246060689465354, "percentage": 82.47, "elapsed_time": "8:22:10", "remaining_time": "1:46:46"} +{"current_steps": 2997, "total_steps": 3633, "loss": 0.7704, "learning_rate": 3.008655902279867e-06, "epoch": 0.8248813046170784, "percentage": 82.49, "elapsed_time": "8:22:20", "remaining_time": "1:46:36"} +{"current_steps": 2998, "total_steps": 3633, "loss": 0.7863, "learning_rate": 2.9994458775232947e-06, "epoch": 0.8251565402876213, "percentage": 82.52, "elapsed_time": "8:22:30", "remaining_time": "1:46:26"} +{"current_steps": 2999, "total_steps": 3633, "loss": 0.783, "learning_rate": 2.9902488282466135e-06, "epoch": 0.8254317759581642, "percentage": 82.55, "elapsed_time": "8:22:40", "remaining_time": "1:46:16"} +{"current_steps": 3000, "total_steps": 3633, "loss": 0.763, "learning_rate": 2.981064761469359e-06, "epoch": 0.8257070116287071, "percentage": 82.58, "elapsed_time": "8:22:50", "remaining_time": "1:46:06"} +{"current_steps": 3001, "total_steps": 3633, "loss": 0.7741, "learning_rate": 2.9718936842011727e-06, "epoch": 0.82598224729925, "percentage": 82.6, "elapsed_time": "8:23:07", "remaining_time": "1:45:57"} +{"current_steps": 3002, "total_steps": 3633, "loss": 0.7943, "learning_rate": 2.962735603441762e-06, "epoch": 0.8262574829697928, "percentage": 82.63, "elapsed_time": "8:23:17", "remaining_time": "1:45:47"} +{"current_steps": 3003, "total_steps": 3633, "loss": 0.7918, "learning_rate": 2.9535905261809492e-06, "epoch": 0.8265327186403358, "percentage": 82.66, "elapsed_time": "8:23:28", "remaining_time": "1:45:37"} +{"current_steps": 3004, "total_steps": 3633, "loss": 0.7917, "learning_rate": 2.9444584593985914e-06, "epoch": 0.8268079543108787, "percentage": 82.69, "elapsed_time": "8:23:38", "remaining_time": "1:45:27"} +{"current_steps": 3005, "total_steps": 3633, "loss": 0.7644, "learning_rate": 2.935339410064646e-06, "epoch": 0.8270831899814216, "percentage": 82.71, "elapsed_time": "8:23:48", "remaining_time": "1:45:17"} +{"current_steps": 3006, "total_steps": 3633, "loss": 0.7899, "learning_rate": 2.9262333851391234e-06, "epoch": 0.8273584256519645, "percentage": 82.74, "elapsed_time": "8:23:58", "remaining_time": "1:45:07"} +{"current_steps": 3007, "total_steps": 3633, "loss": 0.7416, "learning_rate": 2.917140391572084e-06, "epoch": 0.8276336613225074, "percentage": 82.77, "elapsed_time": "8:24:08", "remaining_time": "1:44:57"} +{"current_steps": 3008, "total_steps": 3633, "loss": 0.7583, "learning_rate": 2.908060436303661e-06, "epoch": 0.8279088969930503, "percentage": 82.8, "elapsed_time": "8:24:18", "remaining_time": "1:44:47"}