--- library_name: transformers tags: [] --- # Model Card for Model ID ## Code to create model ```python import torch from transformers import GroundingDinoConfig, GroundingDinoForObjectDetection, AutoProcessor model_id = 'IDEA-Research/grounding-dino-tiny' config = GroundingDinoConfig.from_pretrained( model_id, decoder_layers=1, decoder_attention_heads=2, encoder_layers=1, encoder_attention_heads=2, text_config=dict( num_attention_heads=2, num_hidden_layers=1, hidden_size=32, ), backbone_config=dict( attention_probs_dropout_prob=0.0, depths=[1, 1, 2, 1], drop_path_rate=0.1, embed_dim=12, encoder_stride=32, hidden_act="gelu", hidden_dropout_prob=0.0, hidden_size=48, image_size=224, initializer_range=0.02, layer_norm_eps=1e-05, mlp_ratio=4.0, num_channels=3, num_heads=[1, 2, 3, 4], num_layers=4, out_features=["stage2", "stage3", "stage4"], out_indices=[2, 3, 4], patch_size=4, stage_names=["stem", "stage1", "stage2", "stage3", "stage4"], window_size=7 ) ) # Create model and randomize all weights model = GroundingDinoForObjectDetection(config) torch.manual_seed(0) # Set for reproducibility for name, param in model.named_parameters(): param.data = torch.randn_like(param) processor = AutoProcessor.from_pretrained(model_id) print(model.num_parameters()) # 7751525 ``` ## Model Details ### Model Description This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses ### Direct Use [More Information Needed] ### Downstream Use [optional] [More Information Needed] ### Out-of-Scope Use [More Information Needed] ## Bias, Risks, and Limitations [More Information Needed] ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data [More Information Needed] ### Training Procedure #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] #### Speeds, Sizes, Times [optional] [More Information Needed] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data [More Information Needed] #### Factors [More Information Needed] #### Metrics [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] [More Information Needed] ## Environmental Impact Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]