|
|
|
from typing import Dict, Any |
|
from PIL import Image |
|
import torch |
|
import requests |
|
from io import BytesIO |
|
from transformers import BlipForConditionalGeneration, BlipProcessor |
|
|
|
|
|
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') |
|
|
|
class EndpointHandler(): |
|
def __init__(self, path=""): |
|
|
|
|
|
self.processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base") |
|
self.model = BlipForConditionalGeneration.from_pretrained( |
|
"Salesforce/blip-image-captioning-base" |
|
).to(device) |
|
self.model.eval() |
|
self.model = self.model.to(device) |
|
|
|
|
|
|
|
def __call__(self, data: Any) -> Dict[str, Any]: |
|
""" |
|
Args: |
|
data (:obj:): |
|
includes the input data and the parameters for the inference. |
|
Return: |
|
A :obj:`dict`:. The object returned should be a dict of one list like {"captions": ["A hugging face at the office"]} containing : |
|
- "caption": A string corresponding to the generated caption. |
|
""" |
|
inputs = data.pop("inputs", data) |
|
parameters = data.pop("parameters", {}) |
|
|
|
raw_images = [Image.open(BytesIO(requests.get(_img).content)) for _img in inputs] |
|
|
|
processed_image = self.processor(images=raw_images, return_tensors="pt") |
|
processed_image["pixel_values"] = processed_image["pixel_values"].to(device) |
|
processed_image = {**processed_image, **parameters} |
|
|
|
with torch.no_grad(): |
|
out = self.model.generate( |
|
**processed_image |
|
) |
|
captions = self.processor.batch_decode(out, skip_special_tokens=True) |
|
|
|
return {"captions": captions} |
|
|