--- base_model: - Qwen/Qwen2-VL-2B-Instruct --- This is the [Qwen/Qwen2-VL-2B-Instruct](https://huggingface.co/Qwen/Qwen2-VL-2B-Instruct) model, converted to OpenVINO, with int4 weights for the language model, int8 weights for the other models. Use OpenVINO GenAI to run inference on this model: - Install OpenVINO GenAI nightly and pillow: ``` pip install --upgrade --pre pillow openvino-genai openvino openvino-tokenizers --extra-index-url https://storage.openvinotoolkit.org/simple/wheels/nightly ``` - Download a test image: `curl -O "https://storage.openvinotoolkit.org/test_data/images/dog.jpg"` - Run inference: ```python import numpy as np import openvino as ov import openvino_genai from PIL import Image # Choose GPU instead of CPU in the line below to run the model on Intel integrated or discrete GPU pipe = openvino_genai.VLMPipeline("./Qwen2-VL-2B-Instruct-ov-int4", "CPU") pipe.start_chat() image = Image.open("dog.jpg") image_data = np.array(image.getdata()).reshape(1, image.size[1], image.size[0], 3).astype(np.uint8) image_data = ov.Tensor(image_data) prompt = "Can you describe the image?" result = pipe.generate(prompt, image=image_data, max_new_tokens=100) print(result.texts[0]) ``` See [OpenVINO GenAI repository](https://github.com/openvinotoolkit/openvino.genai?tab=readme-ov-file#performing-visual-language-text-generation)