--- license: mit base_model: haryoaw/scenario-MDBT-TCR_data-en-cardiff_eng_only tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: scenario-KD-PO-CDF-EN-FROM-EN-D2_data-en-cardiff_eng_only66 results: [] --- # scenario-KD-PO-CDF-EN-FROM-EN-D2_data-en-cardiff_eng_only66 This model is a fine-tuned version of [haryoaw/scenario-MDBT-TCR_data-en-cardiff_eng_only](https://huggingface.co/haryoaw/scenario-MDBT-TCR_data-en-cardiff_eng_only) on the None dataset. It achieves the following results on the evaluation set: - Loss: 24.7382 - Accuracy: 0.4550 - F1: 0.4534 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 66 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.72 | 100 | 15.4704 | 0.4568 | 0.4535 | | No log | 3.45 | 200 | 16.0314 | 0.4669 | 0.4628 | | No log | 5.17 | 300 | 19.1999 | 0.4568 | 0.4479 | | No log | 6.9 | 400 | 21.8826 | 0.4546 | 0.4456 | | 9.984 | 8.62 | 500 | 21.4137 | 0.4572 | 0.4573 | | 9.984 | 10.34 | 600 | 23.3766 | 0.4396 | 0.4365 | | 9.984 | 12.07 | 700 | 24.2726 | 0.4475 | 0.4365 | | 9.984 | 13.79 | 800 | 24.3246 | 0.4502 | 0.4440 | | 9.984 | 15.52 | 900 | 24.9899 | 0.4634 | 0.4616 | | 1.9269 | 17.24 | 1000 | 24.6384 | 0.4616 | 0.4583 | | 1.9269 | 18.97 | 1100 | 24.3379 | 0.4493 | 0.4454 | | 1.9269 | 20.69 | 1200 | 24.6032 | 0.4625 | 0.4577 | | 1.9269 | 22.41 | 1300 | 24.1732 | 0.4608 | 0.4572 | | 1.9269 | 24.14 | 1400 | 25.5374 | 0.4493 | 0.4448 | | 0.6962 | 25.86 | 1500 | 24.3690 | 0.4563 | 0.4553 | | 0.6962 | 27.59 | 1600 | 24.9417 | 0.4515 | 0.4488 | | 0.6962 | 29.31 | 1700 | 24.7382 | 0.4550 | 0.4534 | ### Framework versions - Transformers 4.33.3 - Pytorch 2.1.1+cu121 - Datasets 2.14.5 - Tokenizers 0.13.3