import numpy as np import pandas as pd import torch import torch.nn as nn import torch.optim as optim from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score class PlacementModel(nn.Module): def __init__(self, input_size, hidden_size, output_size): super(PlacementModel, self).__init__() self.fc1 = nn.Linear(input_size, hidden_size) self.fc2 = nn.Linear(hidden_size, output_size) def forward(self, x): x = torch.relu(self.fc1(x)) x = self.fc2(x) return x # Load and preprocess data df = pd.read_csv("Placement (2).csv") df = df.drop(columns=["sl_no","stream","ssc_p","ssc_b","hsc_p","hsc_b","etest_p"]) df['internship'] = df['internship'].map({'Yes':1,'No':0}) df['status'] = df['status'].map({'Placed':1,'Not Placed':0}) X_fullstk = df.drop(['status','management','leadership','communication','sales'], axis=1) y = df['status'] X_train_fullstk, X_test_fullstk, y_train, y_test = train_test_split(X_fullstk, y, test_size=0.20, random_state=42) # Define model hyperparameters input_size = X_fullstk.shape[1] hidden_size = 128 output_size = 2 learning_rate = 0.01 epochs = 100 # Initialize model model = PlacementModel(input_size, hidden_size, output_size) criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters(), lr=learning_rate) # Train model for epoch in range(epochs): inputs = torch.tensor(X_train_fullstk.values, dtype=torch.float32) labels = torch.tensor(y_train.values, dtype=torch.long) optimizer.zero_grad() outputs = model(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() if epoch % 10 == 0: print(f'Epoch [{epoch+1}/{epochs}], Loss: {loss.item():.4f}') # Evaluate model with torch.no_grad(): inputs = torch.tensor(X_test_fullstk.values, dtype=torch.float32) labels = torch.tensor(y_test.values, dtype=torch.long) outputs = model(inputs) _, predicted = torch.max(outputs.data, 1) accuracy = accuracy_score(labels, predicted) print(f'Test Accuracy: {accuracy:.4f}') # Save model torch.save(model.state_dict(), 'placement_model.pth')