File size: 12,721 Bytes
f3a1217
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
import numpy as np
# import onnxruntime as ort
import ztu_somemodelruntime_rknnlite2 as ort
import sentencepiece as spm
import soundfile as sf

ort.set_default_logger_verbosity(0)

def load_onnx_model(model_path):
    """加载ONNX模型"""
    return ort.InferenceSession(
        model_path,
        providers=['CUDAExecutionProvider', 'CPUExecutionProvider']
    )

class SimpleT5Tokenizer:
    def __init__(self, model_path, max_length=128):
        """初始化tokenizer
        
        Args:
            model_path: sentencepiece模型路径
            max_length: 序列最大长度,默认128
        """
        self.sp = spm.SentencePieceProcessor()
        self.sp.Load(model_path)
        
        # T5特殊token的ID
        self.pad_token_id = 0
        self.eos_token_id = 1
        self.max_length = max_length
        
    def __call__(self, texts, padding=True, truncation=True, max_length=None, return_tensors="np"):
        """处理文本序列
        
        Args:
            texts: 文本或文本列表
            padding: 是否padding
            truncation: 是否截断
            max_length: 可选,覆盖默认max_length
            return_tensors: 返回类型(只支持"np")
            
        Returns:
            dict: 包含input_ids和attention_mask
        """
        if isinstance(texts, str):
            texts = [texts]
            
        max_len = max_length if max_length is not None else self.max_length
            
        # 分词并转换为ID
        input_ids = []
        attention_mask = []
        for text in texts:
            ids = self.sp.EncodeAsIds(text)
            
            # 截断处理(预留EOS token位置)
            if truncation and len(ids) > max_len - 1:
                ids = ids[:max_len-1]
            ids.append(self.eos_token_id)
            
            # 创建attention mask
            mask = [1] * len(ids)
            
            # Padding处理
            if padding:
                pad_length = max_len - len(ids)
                ids.extend([self.pad_token_id] * pad_length)
                mask.extend([0] * pad_length)
                
            input_ids.append(ids)
            attention_mask.append(mask)
                
        # 转换为numpy array
        input_ids = np.array(input_ids, dtype=np.int64)
        attention_mask = np.array(attention_mask, dtype=np.int64)
            
        return {
            "input_ids": input_ids,
            "attention_mask": attention_mask
        }

def encode_text(prompt, negative_prompt, tokenizer, text_encoder_onnx, guidance_scale=None):
    """编码文本,同时处理条件和无条件文本
    
    Args:
        prompt: 文本提示
        tokenizer: T5 tokenizer
        text_encoder_onnx: T5 ONNX模型
        guidance_scale: 引导系数
    """
    if not isinstance(prompt, list):
        prompt = [prompt]
    
    if guidance_scale is not None and guidance_scale > 1.0:
        # 同时处理条件和无条件文本
        all_prompts = [negative_prompt] + prompt
        batch = tokenizer(
            all_prompts,
            padding=True,
            truncation=True,
            return_tensors="np"
        )
        
        # ONNX推理
        all_hidden_states = text_encoder_onnx.run(
            ['last_hidden_state'],
            {
                'input_ids': batch['input_ids'].astype(np.int64),
                'attention_mask': batch['attention_mask'].astype(np.int64)
            }
        )[0]
            
        # 分离无条件和条件结果
        uncond_hidden_states = all_hidden_states[0:1]
        cond_hidden_states = all_hidden_states[1:]
        uncond_mask = batch['attention_mask'][0:1]
        cond_mask = batch['attention_mask'][1:]
        
        return (uncond_hidden_states, uncond_mask), (cond_hidden_states, cond_mask)
    else:
        # 只处理条件文本
        batch = tokenizer(
            prompt,
            padding=True,
            truncation=True,
            return_tensors="np"
        )
        
        # ONNX推理
        hidden_states = text_encoder_onnx.run(
            ['last_hidden_state'],
            {
                'input_ids': batch['input_ids'].astype(np.int64),
                'attention_mask': batch['attention_mask'].astype(np.int64)
            }
        )[0]
            
        return hidden_states, batch['attention_mask']

def retrieve_timesteps(scheduler, num_inference_steps, device, timesteps=None, sigmas=None):
    """获取timesteps"""
    if sigmas is not None:
        scheduler.set_timesteps(sigmas=sigmas)
        timesteps = scheduler.timesteps
        num_inference_steps = len(timesteps)
    else:
        scheduler.set_timesteps(num_inference_steps)
        timesteps = scheduler.timesteps
    return timesteps, num_inference_steps

# 添加一个简单的FlowMatchScheduler类
class SimpleFlowMatchScheduler:
    def __init__(self, num_train_timesteps=1000, shift=1.0):
        """初始化scheduler
        
        Args:
            num_train_timesteps: 训练步数
            shift: 时间步偏移量
        """
        # 生成线性timesteps
        timesteps = np.linspace(1, num_train_timesteps, num_train_timesteps, dtype=np.float32)[::-1].copy()
        
        # 计算sigmas
        sigmas = timesteps / num_train_timesteps
        sigmas = shift * sigmas / (1 + (shift - 1) * sigmas)
        
        # 添加终止sigma
        self.sigmas = np.append(sigmas, 0.0)
        self.timesteps = sigmas * num_train_timesteps
        self.step_index = None
        
    def set_timesteps(self, num_inference_steps):
        """设置推理时的timesteps
        
        Args:
            num_inference_steps: 推理步数
        """
        timesteps = np.linspace(1, len(self.timesteps), num_inference_steps, dtype=np.float32)[::-1].copy()
        sigmas = timesteps / len(self.timesteps)
        self.sigmas = np.append(sigmas, 0.0)
        self.timesteps = sigmas * len(self.timesteps)
        self.step_index = 0
        
    def step(self, model_output, timestep, sample):
        """执行一步euler更新
        
        Args:
            model_output: 模型输出
            timestep: 当前时间步
            sample: 当前样本
            
        Returns:
            prev_sample: 更新后的样本
        """
        sigma = self.sigmas[self.step_index] 
        sigma_next = self.sigmas[self.step_index + 1]
        
        # euler更新
        prev_sample = sample + (sigma_next - sigma) * model_output
        
        self.step_index += 1
        return prev_sample

def generate_audio_onnx(
    prompt="",
    negative_prompt="",
    duration=10,
    steps=50,
    guidance_scale=4.5,
    onnx_dir="./onnx_models",
    output_path="output_onnx.wav",
    seed=None
):
    if seed is not None:
        np.random.seed(seed)
    
    # 加载tokenizer和ONNX模型,设置固定长度
    tokenizer = SimpleT5Tokenizer(f"{onnx_dir}/spiece.model", max_length=63)
    text_encoder_onnx = load_onnx_model(f"{onnx_dir}/text_encoder_nf4.onnx")
    
    # 加载其他ONNX模型
    vae_decoder = load_onnx_model(f"{onnx_dir}/vae_decoder.onnx")
    duration_embedder = load_onnx_model(f"{onnx_dir}/duration_embedder.onnx")
    transformer = load_onnx_model(f"{onnx_dir}/transformer.onnx")
    proj_layer = load_onnx_model(f"{onnx_dir}/proj.onnx")
    
    # 1. duration embedding
    duration_input = np.array([[duration]], dtype=np.float32)
    print(f"[Shape] duration输入: {duration_input.shape}")
    
    duration_hidden_states = duration_embedder.run(
        ['embedding'],
        {'duration': duration_input}
    )[0]
    print(f"[Shape] duration embedding: {duration_hidden_states.shape}")

    if guidance_scale > 1.0:
        duration_hidden_states = np.concatenate([duration_hidden_states] * 2, axis=0)
        print(f"[Shape] 复制后的duration embedding: {duration_hidden_states.shape}")
    
    # 2. text encoder
    if guidance_scale > 1.0:
        (uncond_hidden_states, uncond_mask), (cond_hidden_states, cond_mask) = encode_text(
            prompt, negative_prompt, tokenizer, text_encoder_onnx, guidance_scale=guidance_scale
        )
        print(cond_hidden_states)
        encoder_hidden_states = np.concatenate([uncond_hidden_states, cond_hidden_states])
        attention_mask = np.concatenate([uncond_mask, cond_mask])
    else:
        encoder_hidden_states, attention_mask = encode_text(
            prompt, tokenizer, text_encoder_onnx
        )
    
    # 3. pooled_text
    boolean_encoder_mask = (attention_mask == 1)
    mask_expanded = boolean_encoder_mask[..., None].repeat(encoder_hidden_states.shape[-1], axis=-1)
    masked_data = np.where(mask_expanded, encoder_hidden_states, np.nan)
    pooled = np.nanmean(masked_data, axis=1)
    
    # 使用projection层处理
    pooled_text = proj_layer.run(
        ['projected'],
        {'text_embedding': pooled.astype(np.float32)}
    )[0]
    
    # 4. 合并duration和text特征
    encoder_hidden_states = np.concatenate(
        [encoder_hidden_states, duration_hidden_states],
        axis=1
    )
    
    # 5. 创建其他输入
    txt_ids = np.zeros((1, encoder_hidden_states.shape[1], 3), dtype=np.int64)
    img_ids = np.tile(
        np.arange(645, dtype=np.int64)[None, :, None],
        (1, 1, 3)
    )
    
    # 6. scheduler
    scheduler = SimpleFlowMatchScheduler(num_train_timesteps=1000)
    scheduler.set_timesteps(steps)
    
    # 初始化latents
    latents = np.random.randn(1, 645, 64).astype(np.float32)
    
    # 7. 生成循环
    for i in range(steps):
        # Transformer前向传播
        noise_pred = transformer.run(
            ['output'],
            {
                'hidden_states': latents,
                'timestep': np.array([scheduler.timesteps[i]/1000], dtype=np.float32),
                'pooled_text': pooled_text,
                'encoder_hidden_states': encoder_hidden_states, 
                'txt_ids': txt_ids,
                'img_ids': img_ids
            }
        )[0]
        
        if i == 0:  # 只在第一步打印
            print(f"[Shape] noise预测输出: {noise_pred.shape}")
            
        # 应用classifier free guidance
        if guidance_scale > 1.0:
            noise_pred_uncond, noise_pred_text = noise_pred[0:1], noise_pred[1:2]
            noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
            
        # 使用scheduler更新latents
        latents = scheduler.step(noise_pred, scheduler.timesteps[i], latents)
        
        if i % 10 == 0:
            print(f"生成进度: {i}/{steps}")
            
    # 8. VAE解码前的处理
    latents = latents / scheduler.sigmas[0]
    latents = np.transpose(latents, (0, 2, 1))
    
    # 9. VAE解码
    wave = vae_decoder.run(['audio'], {'latent': latents})[0]
    
    # 10. 裁剪
    sample_rate = 44100
    waveform_end = int(duration * sample_rate)
    wave = wave[:, :, :waveform_end]
    print(f"[Shape] 裁剪后的最终波形: {wave.shape}")
    
    # 11. 保存音频
    wave = wave[0]  # 移除batch维度
    sf.write(output_path, wave.T, sample_rate)  # soundfile需要(samples, channels)格式
    
    return wave

if __name__ == "__main__":
    import argparse
    
    parser = argparse.ArgumentParser(description="测试ONNX模型推理")
    parser.add_argument("--prompt", type=str, default="What does the fox say?", help="文本提示")
    parser.add_argument("--negative_prompt", type=str, default="", help="负文本提示")
    parser.add_argument("--onnx_dir", type=str, default=".", help="ONNX模型目录")
    parser.add_argument("--duration", type=float, default=10.0, help="生成音频时长(秒)")
    parser.add_argument("--steps", type=int, default=30, help="推理步数")
    parser.add_argument("--guidance_scale", type=float, default=4.5, help="引导系数")
    parser.add_argument("--output", type=str, default="output_onnx.wav", help="输出音频路径")
    parser.add_argument("--seed", type=int, default=42, help="随机种子")
    
    args = parser.parse_args()
    
    # 生成音频
    wave = generate_audio_onnx(
        # prompt="What does the fox say?",
        # prompt="Never gonna give you up, never gonna let you down",
        # prompt="Electonic music, future house style",
        prompt=args.prompt,
        negative_prompt=args.negative_prompt,
        duration=args.duration,
        steps=args.steps,
        guidance_scale=args.guidance_scale,
        onnx_dir=args.onnx_dir,
        output_path=args.output,
        seed=args.seed
    )
    
    print(f"生成的音频shape为: {wave.shape}")
    print(f"音频已保存到: {args.output}")