--- base_model: mistralai/Mistral-7B-v0.1 --- # Mistral-7B-v0.1-AWQ-G128-INT4-SYM-BF16 - ## Introduction This model was created by applying [Quark](https://quark.docs.amd.com/latest/index.html) with calibration samples from Pile dataset. - ## Quantization Stragegy - ***Quantized Layers***: All linear layers excluding "lm_head" - ***Weight***: INT4 symmetric per-group, group_size=128 - ***Pre-trained Model data type***: BFloat16 - ## Quick Start 1. [Download and install Quark](https://quark.docs.amd.com/latest/install.html) 2. Run the quantization script in the example folder using the following command line: ```sh export MODEL_DIR = [local model checkpoint folder] or mistralai/Mistral-7B-v0.1 # single GPU python3 quantize_quark.py --model_dir $MODEL_DIR \ --data_type bfloat16 \ --quant_scheme w_int4_per_group_sym \ --num_calib_data 128 \ --quant_algo awq \ --dataset pileval_for_awq_benchmark \ --seq_len 512 \ --output_dir Mistral-7B-v0.1-AWQ-G128-INT4-SYM-BF16 \ --model_export quark_safetensors # cpu python3 quantize_quark.py --model_dir $MODEL_DIR \ --data_type bfloat16 \ --quant_scheme w_int4_per_group_sym \ --num_calib_data 128 \ --quant_algo awq \ --dataset pileval_for_awq_benchmark \ --seq_len 512 \ --output_dir Mistral-7B-v0.1-AWQ-G128-INT4-SYM-BF16 \ --model_export quark_safetensors \ --device cpu ``` ## Deployment Quark has its own export format, quark_safetensors, which is compatible with autoAWQ exports. ## Evaluation Quark currently uses perplexity(PPL) as the evaluation metric for accuracy loss before and after quantization.The specific PPL algorithm can be referenced in the quantize_quark.py. The quantization evaluation results are conducted in pseudo-quantization mode, which may slightly differ from the actual quantized inference accuracy. These results are provided for reference only. #### Evaluation scores
Benchmark | Mistral-7B-v0.1(Bfloat16) | Mistral-7B-v0.1-AWQ-G128-INT4-SYM-BF16(this model) |
Perplexity-wikitext2 | 5.2527 | 5.4250 |