---
language:
- en
tags:
- stable-diffusion
- text-to-image
license: bigscience-bloom-rail-1.0
inference: false
---
# waifu-diffusion - Diffusion for Weebs
waifu-diffusion is a latent text-to-image diffusion model that has been conditioned on high-quality anime images through [Textual Inversion](https://github.com/rinongal/textual_inversion).
Prompt: touhou 1girl komeiji_koishi portrait
## Model Description
The model originally used for fine-tuning is [Stable Diffusion V1-4](https://huggingface.co/CompVis/stable-diffusion-v1-4), which is a latent image diffusion model trained on [LAION2B-en](https://huggingface.co/datasets/laion/laion2B-en).
The current model is based from [Yasu Seno](https://twitter.com/naclbbr)'s [TrinArt Stable Diffusion](https://huggingface.co/naclbit/trinart_stable_diffusion) which has been fine-tuned on 30,000 high-resolution manga/anime-style images for 3.5 epochs.
With [Textual Inversion](https://github.com/rinongal/textual_inversion), the embeddings for the text encoder has been trained to align more with anime-styled images, reducing excessive prompting.
## Training Data & Annotative Prompting
The data used for Textual Inversion has come from a random sample of 25k Danbooru images, which were then filtered based on [CLIP Aesthetic Scoring](https://github.com/christophschuhmann/improved-aesthetic-predictor) where only images with an aesthetic score greater than `6.0` were used.
Captions are Danbooru-style captions.
## Downstream Uses
This model can be used for entertainment purposes and as a generative art assistant.
## Example Code
```python
import torch
from torch import autocast
from diffusers import StableDiffusionPipeline
model_id = "hakurei/waifu-diffusion"
device = "cuda"
pipe = StableDiffusionPipeline.from_pretrained(model_id, use_auth_token=True)
pipe = pipe.to(device)
prompt = "a photo of reimu hakurei. anime style"
with autocast("cuda"):
image = pipe(prompt, guidance_scale=7.5)["sample"][0]
image.save("reimu_hakurei.png")
```
## Team Members and Acknowledgements
This project would not have been possible without the incredible work by the [CompVis Researchers](https://ommer-lab.com/) and the author of the original finetuned model that this work was based upon, [Yasu Seno](https://twitter.com/naclbbr)!
Additionally, the methods presented in the [Textual Inversion](https://github.com/rinongal/textual_inversion) repo was an incredible help.
- [Anthony Mercurio](https://github.com/harubaru)
- [Salt](https://github.com/sALTaccount/)