--- license: apache-2.0 base_model: hZzy/qwen2.5-0.5b-sft-news-IFT tags: - trl - expo - generated_from_trainer model-index: - name: qwen2.5-0.5b-expo-L2EXPO-EXPERIMENT-5-1e6 results: [] --- [Visualize in Weights & Biases](https://wandb.ai/zhiyuzha-university-of-florida/huggingface/runs/yo316k60) # qwen2.5-0.5b-expo-L2EXPO-EXPERIMENT-5-1e6 This model is a fine-tuned version of [hZzy/qwen2.5-0.5b-sft-news-IFT](https://huggingface.co/hZzy/qwen2.5-0.5b-sft-news-IFT) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 5.9323 - Logps: -88.3874 - Logits: -1.2660 - Objective: 5.9770 - Dpo Loss: 3.0916 - Regularize: 5.9770 - Ranking Simple: 0.5134 - Ranking Idealized: 0.5093 - Ranking Idealized Expo: 0.5093 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 6 - gradient_accumulation_steps: 12 - total_train_batch_size: 288 - total_eval_batch_size: 24 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Logps | Logits | Objective | Dpo Loss | Regularize | Ranking Simple | Ranking Idealized | Ranking Idealized Expo | |:-------------:|:------:|:----:|:---------------:|:--------:|:-------:|:---------:|:--------:|:----------:|:--------------:|:-----------------:|:----------------------:| | 1.7171 | 0.2834 | 50 | 0.9452 | -91.4216 | -1.3980 | 0.9804 | 0.8391 | 0.9804 | 0.5114 | 0.5093 | 0.5093 | | 4.4116 | 0.5668 | 100 | 2.2889 | -91.3584 | -1.3646 | 2.2847 | 1.3937 | 2.2847 | 0.5145 | 0.5093 | 0.5093 | | 5.641 | 0.8503 | 150 | 3.6592 | -89.6013 | -1.3612 | 3.6993 | 1.8989 | 3.6993 | 0.5124 | 0.5093 | 0.5093 | | 5.6662 | 1.1337 | 200 | 4.9017 | -91.8203 | -1.3129 | 5.1434 | 2.5622 | 5.1434 | 0.5134 | 0.5093 | 0.5093 | | 5.0544 | 1.4171 | 250 | 4.6457 | -89.6596 | -1.2958 | 4.6981 | 2.3884 | 4.6981 | 0.5093 | 0.5093 | 0.5093 | | 4.799 | 1.7005 | 300 | 5.0697 | -89.6459 | -1.3128 | 5.1481 | 2.5371 | 5.1481 | 0.5114 | 0.5093 | 0.5093 | | 4.3968 | 1.9839 | 350 | 5.4045 | -88.5459 | -1.2879 | 5.3636 | 2.7971 | 5.3636 | 0.5103 | 0.5093 | 0.5093 | | 3.8148 | 2.2674 | 400 | 5.7626 | -88.2542 | -1.2680 | 5.8200 | 2.9398 | 5.8200 | 0.5093 | 0.5093 | 0.5093 | | 3.4169 | 2.5508 | 450 | 5.9539 | -88.0116 | -1.2897 | 6.1065 | 3.1384 | 6.1065 | 0.5145 | 0.5093 | 0.5093 | | 2.988 | 2.8342 | 500 | 5.9854 | -87.9506 | -1.2856 | 6.0183 | 3.1318 | 6.0183 | 0.5093 | 0.5093 | 0.5093 | | 2.4859 | 3.1176 | 550 | 6.1946 | -88.5030 | -1.2805 | 6.2029 | 3.1790 | 6.2029 | 0.5103 | 0.5093 | 0.5093 | | 2.0539 | 3.4010 | 600 | 5.9332 | -88.1616 | -1.2651 | 6.0318 | 3.1111 | 6.0318 | 0.5114 | 0.5093 | 0.5093 | | 1.664 | 3.6845 | 650 | 5.9239 | -88.6992 | -1.2608 | 5.9851 | 3.0968 | 5.9851 | 0.5114 | 0.5093 | 0.5093 | | 1.3502 | 3.9679 | 700 | 5.9176 | -88.5236 | -1.2647 | 5.9571 | 3.0895 | 5.9571 | 0.5134 | 0.5093 | 0.5093 | | 1.0052 | 4.2513 | 750 | 5.9642 | -88.3618 | -1.2630 | 6.0061 | 3.1036 | 6.0061 | 0.5134 | 0.5093 | 0.5093 | | 0.8548 | 4.5347 | 800 | 5.9238 | -88.3534 | -1.2662 | 5.9711 | 3.0853 | 5.9711 | 0.5134 | 0.5093 | 0.5093 | | 0.7765 | 4.8181 | 850 | 5.9323 | -88.3874 | -1.2660 | 5.9770 | 3.0916 | 5.9770 | 0.5134 | 0.5093 | 0.5093 | ### Framework versions - Transformers 4.42.0 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1