--- license: apache-2.0 base_model: hZzy/qwen2.5-0.5b-sft-news-IFT tags: - alignment-handbook - ndcg - trl - expo - generated_from_trainer - trl - expo - generated_from_trainer datasets: - hZzy/train_pairwise model-index: - name: qwen2.5-0.5b-expo-L2EXPO-EXPERIMENT-0.005-5e6 results: [] --- [Visualize in Weights & Biases](https://wandb.ai/zhiyuzha-university-of-florida/huggingface/runs/3gvck2ki) # qwen2.5-0.5b-expo-L2EXPO-EXPERIMENT-0.005-5e6 This model is a fine-tuned version of [hZzy/qwen2.5-0.5b-sft-news-IFT](https://huggingface.co/hZzy/qwen2.5-0.5b-sft-news-IFT) on the hZzy/train_pairwise dataset. It achieves the following results on the evaluation set: - Loss: 0.3951 - Logps: -195.4572 - Logits: -3.2699 - Objective: 0.3956 - Dpo Loss: 0.6771 - Regularize: 0.3956 - Ranking Simple: 0.5661 - Ranking Idealized: 0.9194 - Ranking Idealized Expo: 0.5310 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 6 - gradient_accumulation_steps: 12 - total_train_batch_size: 288 - total_eval_batch_size: 24 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Logps | Logits | Objective | Dpo Loss | Regularize | Ranking Simple | Ranking Idealized | Ranking Idealized Expo | |:-------------:|:------:|:----:|:---------------:|:---------:|:-------:|:---------:|:--------:|:----------:|:--------------:|:-----------------:|:----------------------:| | 0.4052 | 0.2834 | 50 | 0.4107 | -129.0883 | -1.8292 | 0.4120 | 0.6914 | 0.4120 | 0.5372 | 0.9194 | 0.5310 | | 0.3407 | 0.5668 | 100 | 0.4017 | -173.3319 | -2.5066 | 0.4063 | 0.6839 | 0.4063 | 0.5548 | 0.9194 | 0.5310 | | 0.2596 | 0.8503 | 150 | 0.4017 | -188.6395 | -2.4464 | 0.4052 | 0.6806 | 0.4052 | 0.5424 | 0.9194 | 0.5310 | | 0.1965 | 1.1337 | 200 | 0.4002 | -193.1247 | -2.5977 | 0.4041 | 0.6801 | 0.4041 | 0.5589 | 0.9194 | 0.5310 | | 0.1784 | 1.4171 | 250 | 0.3990 | -189.4701 | -2.7528 | 0.4023 | 0.6802 | 0.4023 | 0.5620 | 0.9194 | 0.5310 | | 0.1717 | 1.7005 | 300 | 0.4021 | -195.7304 | -2.8777 | 0.4042 | 0.6799 | 0.4042 | 0.5455 | 0.9194 | 0.5310 | | 0.1527 | 1.9839 | 350 | 0.3960 | -211.6068 | -3.1101 | 0.3970 | 0.6760 | 0.3970 | 0.5558 | 0.9194 | 0.5310 | | 0.1267 | 2.2674 | 400 | 0.3981 | -201.0368 | -3.2515 | 0.3998 | 0.6776 | 0.3998 | 0.5620 | 0.9194 | 0.5310 | | 0.1121 | 2.5508 | 450 | 0.3957 | -192.7809 | -2.9523 | 0.3976 | 0.6782 | 0.3976 | 0.5620 | 0.9194 | 0.5310 | | 0.1063 | 2.8342 | 500 | 0.3941 | -195.7920 | -3.2835 | 0.3949 | 0.6760 | 0.3949 | 0.5671 | 0.9194 | 0.5310 | | 0.0891 | 3.1176 | 550 | 0.3956 | -196.1659 | -3.1953 | 0.3960 | 0.6777 | 0.3960 | 0.5610 | 0.9194 | 0.5310 | | 0.0749 | 3.4010 | 600 | 0.3962 | -194.1237 | -3.1966 | 0.3973 | 0.6781 | 0.3973 | 0.5744 | 0.9194 | 0.5310 | | 0.062 | 3.6845 | 650 | 0.3956 | -195.3244 | -3.2412 | 0.3967 | 0.6778 | 0.3967 | 0.5702 | 0.9194 | 0.5310 | | 0.0583 | 3.9679 | 700 | 0.3956 | -196.4469 | -3.2432 | 0.3961 | 0.6772 | 0.3961 | 0.5640 | 0.9194 | 0.5310 | | 0.0451 | 4.2513 | 750 | 0.3952 | -195.4398 | -3.2666 | 0.3955 | 0.6771 | 0.3955 | 0.5671 | 0.9194 | 0.5310 | | 0.0438 | 4.5347 | 800 | 0.3952 | -195.2319 | -3.2693 | 0.3956 | 0.6771 | 0.3956 | 0.5661 | 0.9194 | 0.5310 | | 0.0408 | 4.8181 | 850 | 0.3951 | -195.5095 | -3.2704 | 0.3956 | 0.6771 | 0.3956 | 0.5661 | 0.9194 | 0.5310 | ### Framework versions - Transformers 4.42.0 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1