--- license: apache-2.0 base_model: hZzy/qwen2.5-0.5b-sft-news-IFT tags: - alignment-handbook - ndcg - trl - expo - generated_from_trainer - trl - expo - generated_from_trainer datasets: - hZzy/train_pairwise model-index: - name: qwen2.5-0.5b-expo-L1EXPO-ES-1 results: [] --- [Visualize in Weights & Biases](https://wandb.ai/zhiyuzha-university-of-florida/huggingface/runs/3epxudpc) # qwen2.5-0.5b-expo-L1EXPO-ES-1 This model is a fine-tuned version of [hZzy/qwen2.5-0.5b-sft-news-IFT](https://huggingface.co/hZzy/qwen2.5-0.5b-sft-news-IFT) on the hZzy/train_pairwise dataset. It achieves the following results on the evaluation set: - Loss: 4.8354 - Logps: -80.1753 - Logits: -0.6936 - Objective: 4.8114 - Dpo Loss: 2.5735 - Regularize: 4.8114 - Ranking Simple: 0.5248 - Ranking Idealized: 0.5295 - Ranking Idealized Expo: 0.5212 - Wo Beta: 13.9356 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 3 - gradient_accumulation_steps: 12 - total_train_batch_size: 144 - total_eval_batch_size: 12 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Logps | Logits | Objective | Dpo Loss | Regularize | Ranking Simple | Ranking Idealized | Ranking Idealized Expo | Wo Beta | |:-------------:|:------:|:----:|:---------------:|:--------:|:-------:|:---------:|:--------:|:----------:|:--------------:|:-----------------:|:----------------------:|:-------:| | 0.4306 | 0.1417 | 50 | 0.5493 | -90.4264 | -1.4289 | 0.5433 | 0.7632 | 0.5433 | 0.5212 | 0.5295 | 0.5212 | 16.2237 | | 1.748 | 0.2834 | 100 | 1.6975 | -88.0491 | -1.2535 | 1.6864 | 1.1354 | 1.6864 | 0.5228 | 0.5295 | 0.5212 | 15.6834 | | 2.8697 | 0.4251 | 150 | 2.9624 | -82.4967 | -1.2524 | 2.8923 | 1.6846 | 2.8923 | 0.5243 | 0.5295 | 0.5212 | 15.1970 | | 3.5268 | 0.5668 | 200 | 4.0302 | -75.9716 | -0.9581 | 3.9597 | 2.1590 | 3.9597 | 0.5238 | 0.5295 | 0.5212 | 14.5792 | | 3.7241 | 0.7085 | 250 | 4.2694 | -81.3047 | -0.7680 | 4.2728 | 2.3310 | 4.2728 | 0.5259 | 0.5295 | 0.5212 | 14.5615 | | 3.6109 | 0.8503 | 300 | 4.4908 | -83.9815 | -0.6388 | 4.4573 | 2.4072 | 4.4573 | 0.5264 | 0.5295 | 0.5212 | 14.3464 | | 3.36 | 0.9920 | 350 | 4.6586 | -80.7491 | -0.5030 | 4.6212 | 2.4991 | 4.6212 | 0.5212 | 0.5295 | 0.5212 | 14.3467 | | 3.112 | 1.1337 | 400 | 4.7244 | -82.4974 | -0.5664 | 4.7293 | 2.5403 | 4.7293 | 0.5186 | 0.5295 | 0.5212 | 14.4038 | | 2.9448 | 1.2754 | 450 | 4.8354 | -80.1753 | -0.6936 | 4.8114 | 2.5735 | 4.8114 | 0.5248 | 0.5295 | 0.5212 | 13.9356 | | 2.8517 | 1.4171 | 500 | 5.0044 | -80.7676 | -0.5973 | 5.0058 | 2.6782 | 5.0058 | 0.5269 | 0.5295 | 0.5212 | 14.2626 | | 2.632 | 1.5588 | 550 | 4.8777 | -80.5219 | -0.6149 | 4.8844 | 2.5752 | 4.8844 | 0.5223 | 0.5295 | 0.5212 | 14.1469 | | 2.5208 | 1.7005 | 600 | 4.9258 | -80.1775 | -0.5875 | 4.9621 | 2.5974 | 4.9621 | 0.5243 | 0.5295 | 0.5212 | 14.2669 | | 2.4198 | 1.8422 | 650 | 5.0327 | -81.0550 | -0.5441 | 5.0454 | 2.6345 | 5.0454 | 0.5269 | 0.5295 | 0.5212 | 14.2479 | | 2.2699 | 1.9839 | 700 | 4.9659 | -79.7376 | -0.5594 | 4.9951 | 2.6292 | 4.9951 | 0.5212 | 0.5295 | 0.5212 | 14.1755 | ### Framework versions - Transformers 4.42.0 - Pytorch 2.3.0+cu121 - Datasets 3.2.0 - Tokenizers 0.19.1