--- license: apache-2.0 base_model: hZzy/qwen2.5-0.5b-sft-news-IFT tags: - alignment-handbook - ndcg - trl - expo - generated_from_trainer - trl - expo - generated_from_trainer datasets: - hZzy/train_pairwise_weighted model-index: - name: qwen2.5-0.5b-expo-DPO-noES5-1 results: [] --- [Visualize in Weights & Biases](https://wandb.ai/zhiyuzha-university-of-florida/huggingface/runs/ka5w2jn7) # qwen2.5-0.5b-expo-DPO-noES5-1 This model is a fine-tuned version of [hZzy/qwen2.5-0.5b-sft-news-IFT](https://huggingface.co/hZzy/qwen2.5-0.5b-sft-news-IFT) on the hZzy/train_pairwise_weighted dataset. It achieves the following results on the evaluation set: - Loss: 1.9399 - Logps: -81.1684 - Logits: -0.8509 - Objective: 1.8787 - Dpo Loss: 1.8787 - Ranking Simple: 0.5347 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 3 - gradient_accumulation_steps: 12 - total_train_batch_size: 144 - total_eval_batch_size: 12 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Logps | Logits | Objective | Dpo Loss | Ranking Simple | |:-------------:|:------:|:----:|:---------------:|:--------:|:-------:|:---------:|:--------:|:--------------:| | 1.1219 | 0.1417 | 50 | 1.1407 | -91.1504 | -1.3894 | 1.1280 | 1.1280 | 0.5274 | | 1.3821 | 0.2834 | 100 | 1.5304 | -81.2234 | -1.3774 | 1.4947 | 1.4947 | 0.5290 | | 1.4062 | 0.4251 | 150 | 1.8818 | -79.7787 | -1.1641 | 1.8192 | 1.8192 | 0.5430 | | 1.2275 | 0.5668 | 200 | 2.0358 | -77.9854 | -1.1289 | 1.9717 | 1.9717 | 0.5347 | | 1.1914 | 0.7085 | 250 | 2.0084 | -78.3385 | -1.0883 | 1.9461 | 1.9461 | 0.5347 | | 1.0378 | 0.8503 | 300 | 2.0918 | -83.4707 | -0.9324 | 2.0357 | 2.0357 | 0.5352 | | 0.8334 | 0.9920 | 350 | 2.1143 | -81.1740 | -0.8755 | 1.9975 | 1.9975 | 0.5388 | | 0.4251 | 1.1337 | 400 | 2.0641 | -81.1689 | -0.8003 | 2.0241 | 2.0241 | 0.5435 | | 0.3886 | 1.2754 | 450 | 2.0085 | -79.8813 | -0.8999 | 1.9598 | 1.9598 | 0.5388 | | 0.4352 | 1.4171 | 500 | 2.0449 | -80.7357 | -0.8634 | 1.9819 | 1.9819 | 0.5367 | | 0.3103 | 1.5588 | 550 | 1.9784 | -80.8827 | -0.8672 | 1.9073 | 1.9073 | 0.5373 | | 0.2489 | 1.7005 | 600 | 1.9488 | -81.0833 | -0.8421 | 1.8851 | 1.8851 | 0.5367 | | 0.3631 | 1.8422 | 650 | 1.9417 | -81.1721 | -0.8529 | 1.8805 | 1.8805 | 0.5347 | | 0.3009 | 1.9839 | 700 | 1.9399 | -81.1684 | -0.8509 | 1.8787 | 1.8787 | 0.5347 | ### Framework versions - Transformers 4.42.0 - Pytorch 2.3.0+cu121 - Datasets 3.2.0 - Tokenizers 0.19.1