--- license: apache-2.0 base_model: hZzy/qwen2.5-0.5b-sft-news-IFT tags: - alignment-handbook - ndcg - trl - expo - generated_from_trainer - trl - expo - generated_from_trainer datasets: - hZzy/train_pairwise_weighted model-index: - name: qwen2.5-0.5b-expo-DPO-noES3-0.1 results: [] --- [Visualize in Weights & Biases](https://wandb.ai/zhiyuzha-university-of-florida/huggingface/runs/ffrdf5px) # qwen2.5-0.5b-expo-DPO-noES3-0.1 This model is a fine-tuned version of [hZzy/qwen2.5-0.5b-sft-news-IFT](https://huggingface.co/hZzy/qwen2.5-0.5b-sft-news-IFT) on the hZzy/train_pairwise_weighted dataset. It achieves the following results on the evaluation set: - Loss: 0.7566 - Logps: -117.9870 - Logits: -1.9778 - Objective: 0.7537 - Dpo Loss: 0.7537 - Regularize: 0.7537 - Ranking Simple: 0.5595 - Wo Beta: 9.1042 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 3 - gradient_accumulation_steps: 12 - total_train_batch_size: 144 - total_eval_batch_size: 12 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Logps | Logits | Objective | Dpo Loss | Regularize | Ranking Simple | Wo Beta | |:-------------:|:------:|:----:|:---------------:|:---------:|:-------:|:---------:|:--------:|:----------:|:--------------:|:-------:| | 0.6316 | 0.1417 | 50 | 0.6807 | -90.3282 | -1.5879 | 0.6825 | 0.6825 | 0.6825 | 0.5342 | 7.8619 | | 0.5922 | 0.2834 | 100 | 0.6793 | -95.8152 | -1.7964 | 0.6819 | 0.6819 | 0.6819 | 0.5487 | 7.7077 | | 0.5002 | 0.4251 | 150 | 0.6815 | -96.2024 | -1.5951 | 0.6749 | 0.6749 | 0.6749 | 0.5497 | 7.4380 | | 0.4735 | 0.5668 | 200 | 0.6951 | -98.9176 | -1.7564 | 0.6911 | 0.6911 | 0.6911 | 0.5569 | 7.5241 | | 0.4626 | 0.7085 | 250 | 0.6976 | -93.4775 | -1.7986 | 0.6945 | 0.6945 | 0.6945 | 0.5580 | 7.9027 | | 0.4214 | 0.8503 | 300 | 0.6931 | -104.4337 | -2.0138 | 0.6865 | 0.6865 | 0.6865 | 0.5616 | 7.5814 | | 0.3652 | 0.9920 | 350 | 0.7074 | -102.8306 | -1.9094 | 0.6984 | 0.6984 | 0.6984 | 0.5559 | 7.8344 | | 0.2206 | 1.1337 | 400 | 0.7347 | -113.6048 | -2.0909 | 0.7296 | 0.7296 | 0.7296 | 0.5502 | 8.6751 | | 0.2202 | 1.2754 | 450 | 0.7463 | -115.7782 | -1.9911 | 0.7433 | 0.7433 | 0.7433 | 0.5512 | 8.9123 | | 0.2366 | 1.4171 | 500 | 0.7444 | -114.7710 | -2.0464 | 0.7387 | 0.7387 | 0.7387 | 0.5518 | 8.8630 | | 0.1989 | 1.5588 | 550 | 0.7553 | -118.7775 | -2.0168 | 0.7519 | 0.7519 | 0.7519 | 0.5595 | 8.9846 | | 0.1952 | 1.7005 | 600 | 0.7544 | -117.4880 | -1.9707 | 0.7513 | 0.7513 | 0.7513 | 0.5595 | 9.0297 | | 0.2252 | 1.8422 | 650 | 0.7560 | -117.8008 | -1.9748 | 0.7529 | 0.7529 | 0.7529 | 0.5585 | 9.0926 | | 0.199 | 1.9839 | 700 | 0.7566 | -117.9869 | -1.9778 | 0.7537 | 0.7537 | 0.7537 | 0.5595 | 9.1042 | ### Framework versions - Transformers 4.42.0 - Pytorch 2.3.0+cu121 - Datasets 3.2.0 - Tokenizers 0.19.1