--- license: apache-2.0 base_model: hZzy/qwen2.5-0.5b-sft-news-IFT tags: - alignment-handbook - ndcg - trl - expo - generated_from_trainer - trl - expo - generated_from_trainer datasets: - hZzy/train_pairwise model-index: - name: qwen2.5-0.5b-expo-DPO-EXPERIMENT results: [] --- [Visualize in Weights & Biases](https://wandb.ai/zhiyuzha-university-of-florida/huggingface/runs/g2cz8uwi) # qwen2.5-0.5b-expo-DPO-EXPERIMENT This model is a fine-tuned version of [hZzy/qwen2.5-0.5b-sft-news-IFT](https://huggingface.co/hZzy/qwen2.5-0.5b-sft-news-IFT) on the hZzy/train_pairwise dataset. It achieves the following results on the evaluation set: - Loss: 0.6818 - Logps: -92.0550 - Logits: -1.5636 - Objective: 0.6891 - Dpo Loss: 0.6891 - Regularize: 0.6891 - Ranking Simple: 0.5196 - Ranking Idealized: 0.5888 - Ranking Idealized Expo: 0.5103 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-07 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 6 - gradient_accumulation_steps: 12 - total_train_batch_size: 288 - total_eval_batch_size: 24 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Logps | Logits | Objective | Dpo Loss | Regularize | Ranking Simple | Ranking Idealized | Ranking Idealized Expo | |:-------------:|:------:|:----:|:---------------:|:--------:|:-------:|:---------:|:--------:|:----------:|:--------------:|:-----------------:|:----------------------:| | 0.6855 | 0.2834 | 50 | 0.6889 | -90.7669 | -1.4343 | 0.6918 | 0.6918 | 0.6918 | 0.5103 | 0.5888 | 0.5103 | | 0.6746 | 0.5668 | 100 | 0.6858 | -90.9748 | -1.4764 | 0.6899 | 0.6899 | 0.6899 | 0.5093 | 0.5888 | 0.5103 | | 0.6601 | 0.8503 | 150 | 0.6828 | -90.8063 | -1.5179 | 0.6886 | 0.6886 | 0.6886 | 0.5134 | 0.5888 | 0.5103 | | 0.6473 | 1.1337 | 200 | 0.6826 | -91.9779 | -1.5427 | 0.6890 | 0.6890 | 0.6890 | 0.5176 | 0.5888 | 0.5103 | | 0.6449 | 1.4171 | 250 | 0.6813 | -91.6044 | -1.5537 | 0.6887 | 0.6887 | 0.6887 | 0.5176 | 0.5888 | 0.5103 | | 0.6384 | 1.7005 | 300 | 0.6818 | -92.0140 | -1.5627 | 0.6890 | 0.6890 | 0.6890 | 0.5186 | 0.5888 | 0.5103 | | 0.6431 | 1.9839 | 350 | 0.6818 | -92.0550 | -1.5636 | 0.6891 | 0.6891 | 0.6891 | 0.5196 | 0.5888 | 0.5103 | ### Framework versions - Transformers 4.42.0 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1