--- license: apache-2.0 base_model: hZzy/qwen2.5-0.5b-sft-news-IFT tags: - alignment-handbook - ndcg - trl - expo - generated_from_trainer - trl - expo - generated_from_trainer datasets: - hZzy/train_pairwise model-index: - name: qwen2.5-0.5b-expo-DPO-EXPERIMENT-1W results: [] --- [Visualize in Weights & Biases](https://wandb.ai/zhiyuzha-university-of-florida/huggingface/runs/vdo32atw) # qwen2.5-0.5b-expo-DPO-EXPERIMENT-1W This model is a fine-tuned version of [hZzy/qwen2.5-0.5b-sft-news-IFT](https://huggingface.co/hZzy/qwen2.5-0.5b-sft-news-IFT) on the hZzy/train_pairwise dataset. It achieves the following results on the evaluation set: - Loss: 12497.9082 - Logps: -80.8773 - Logits: -1.3459 - Objective: 12906.1104 - Dpo Loss: 12906.1104 - Regularize: 12906.1104 - Ranking Simple: 0.5258 - Ranking Idealized: 0.5093 - Ranking Idealized Expo: 0.5093 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 6 - gradient_accumulation_steps: 12 - total_train_batch_size: 288 - total_eval_batch_size: 24 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Logps | Logits | Objective | Dpo Loss | Regularize | Ranking Simple | Ranking Idealized | Ranking Idealized Expo | |:-------------:|:------:|:----:|:---------------:|:--------:|:-------:|:----------:|:----------:|:----------:|:--------------:|:-----------------:|:----------------------:| | 10470.1625 | 0.2834 | 50 | 11322.9775 | -84.9886 | -1.4586 | 11815.3389 | 11815.3389 | 11815.3389 | 0.5165 | 0.5093 | 0.5093 | | 8558.2836 | 0.5668 | 100 | 12877.2754 | -82.3385 | -1.3720 | 13248.5166 | 13248.5166 | 13248.5166 | 0.5176 | 0.5093 | 0.5093 | | 7521.95 | 0.8503 | 150 | 12664.2070 | -80.5751 | -1.3556 | 12926.7227 | 12926.7227 | 12926.7227 | 0.5227 | 0.5093 | 0.5093 | ### Framework versions - Transformers 4.42.0 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1