--- license: apache-2.0 base_model: hZzy/qwen2.5-0.5b-sft-news-IFT tags: - alignment-handbook - ndcg - trl - expo - generated_from_trainer - trl - expo - generated_from_trainer datasets: - hZzy/train_pairwise model-index: - name: qwen2.5-0.5b-expo-DPO-ES2-0.1 results: [] --- [Visualize in Weights & Biases](https://wandb.ai/zhiyuzha-university-of-florida/huggingface/runs/vy4xlg1g) # qwen2.5-0.5b-expo-DPO-ES2-0.1 This model is a fine-tuned version of [hZzy/qwen2.5-0.5b-sft-news-IFT](https://huggingface.co/hZzy/qwen2.5-0.5b-sft-news-IFT) on the hZzy/train_pairwise dataset. It achieves the following results on the evaluation set: - Loss: 0.6808 - Logps: -90.9674 - Logits: -1.6164 - Objective: 0.6836 - Dpo Loss: 0.6836 - Regularize: 0.6836 - Ranking Simple: 0.5331 - Ranking Idealized: 0.6030 - Ranking Idealized Expo: 0.5223 - Wo Beta: 7.8643 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 3 - gradient_accumulation_steps: 12 - total_train_batch_size: 144 - total_eval_batch_size: 12 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Logps | Logits | Objective | Dpo Loss | Regularize | Ranking Simple | Ranking Idealized | Ranking Idealized Expo | Wo Beta | |:-------------:|:------:|:----:|:---------------:|:---------:|:-------:|:---------:|:--------:|:----------:|:--------------:|:-----------------:|:----------------------:|:-------:| | 0.689 | 0.1417 | 50 | 0.6875 | -90.0815 | -1.4869 | 0.6892 | 0.6892 | 0.6892 | 0.5259 | 0.6030 | 0.5223 | 7.8857 | | 0.6673 | 0.2834 | 100 | 0.6808 | -90.9674 | -1.6164 | 0.6836 | 0.6836 | 0.6836 | 0.5331 | 0.6030 | 0.5223 | 7.8643 | | 0.6376 | 0.4251 | 150 | 0.6785 | -94.6386 | -1.6873 | 0.6833 | 0.6833 | 0.6833 | 0.5342 | 0.6030 | 0.5223 | 8.1745 | | 0.5955 | 0.5668 | 200 | 0.6808 | -100.2786 | -1.8583 | 0.6818 | 0.6818 | 0.6818 | 0.5342 | 0.6030 | 0.5223 | 7.9037 | | 0.5623 | 0.7085 | 250 | 0.6757 | -97.3034 | -1.9407 | 0.6757 | 0.6757 | 0.6757 | 0.5362 | 0.6030 | 0.5223 | 7.9161 | | 0.5255 | 0.8503 | 300 | 0.7037 | -102.4820 | -2.0313 | 0.7119 | 0.7119 | 0.7119 | 0.5352 | 0.6030 | 0.5223 | 8.7956 | | 0.4939 | 0.9920 | 350 | 0.6897 | -102.1435 | -1.9358 | 0.6916 | 0.6916 | 0.6916 | 0.5419 | 0.6030 | 0.5223 | 8.3961 | ### Framework versions - Transformers 4.42.0 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1