--- license: apache-2.0 base_model: hZzy/qwen2.5-0.5b-sft-news-IFT tags: - trl - expo - generated_from_trainer model-index: - name: qwen2.5-0.5b-expo-DPO-ES-100 results: [] --- [Visualize in Weights & Biases](https://wandb.ai/zhiyuzha-university-of-florida/huggingface/runs/tkmcvc2n) # qwen2.5-0.5b-expo-DPO-ES-100 This model is a fine-tuned version of [hZzy/qwen2.5-0.5b-sft-news-IFT](https://huggingface.co/hZzy/qwen2.5-0.5b-sft-news-IFT) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 225.2907 - Logps: -80.3480 - Logits: -0.5542 - Objective: 216.5803 - Dpo Loss: 216.5803 - Regularize: 216.5803 - Ranking Simple: 0.5419 - Ranking Idealized: 0.5212 - Ranking Idealized Expo: 0.5212 - Wo Beta: 6.8429 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 3 - gradient_accumulation_steps: 12 - total_train_batch_size: 144 - total_eval_batch_size: 12 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Logps | Logits | Objective | Dpo Loss | Regularize | Ranking Simple | Ranking Idealized | Ranking Idealized Expo | Wo Beta | |:-------------:|:------:|:----:|:---------------:|:--------:|:-------:|:---------:|:--------:|:----------:|:--------------:|:-----------------:|:----------------------:|:-------:| | 17.3723 | 0.1417 | 50 | 32.1125 | -90.9520 | -1.4391 | 31.4854 | 31.4854 | 31.4854 | 0.5264 | 0.5212 | 0.5212 | 7.6851 | | 60.4454 | 0.2834 | 100 | 70.9968 | -86.6000 | -1.4386 | 70.7719 | 70.7719 | 70.7719 | 0.5305 | 0.5212 | 0.5212 | 7.5289 | | 100.2237 | 0.4251 | 150 | 129.8928 | -85.7303 | -1.2892 | 126.8845 | 126.8845 | 126.8845 | 0.5321 | 0.5212 | 0.5212 | 7.4641 | | 120.8284 | 0.5668 | 200 | 164.0152 | -75.5542 | -1.3195 | 159.5013 | 159.5013 | 159.5013 | 0.5357 | 0.5212 | 0.5212 | 7.1836 | | 134.8217 | 0.7085 | 250 | 195.7212 | -79.3891 | -1.2058 | 190.8510 | 190.8510 | 190.8510 | 0.5285 | 0.5212 | 0.5212 | 7.2711 | | 119.0273 | 0.8503 | 300 | 192.5231 | -84.2971 | -0.9945 | 188.0580 | 188.0580 | 188.0580 | 0.5357 | 0.5212 | 0.5212 | 6.9382 | | 114.0792 | 0.9920 | 350 | 205.7797 | -82.1125 | -1.0045 | 192.3920 | 192.3920 | 192.3920 | 0.5409 | 0.5212 | 0.5212 | 6.9235 | | 72.4145 | 1.1337 | 400 | 212.6613 | -82.8156 | -0.7120 | 204.8122 | 204.8122 | 204.8122 | 0.5409 | 0.5212 | 0.5212 | 7.0485 | | 76.9668 | 1.2754 | 450 | 210.2291 | -82.4190 | -0.7807 | 203.0261 | 203.0261 | 203.0261 | 0.5383 | 0.5212 | 0.5212 | 6.9244 | | 77.9261 | 1.4171 | 500 | 211.3156 | -81.3728 | -0.7438 | 202.1569 | 202.1569 | 202.1569 | 0.5362 | 0.5212 | 0.5212 | 6.8863 | | 70.5755 | 1.5588 | 550 | 212.6468 | -82.3296 | -0.6838 | 200.1410 | 200.1410 | 200.1410 | 0.5430 | 0.5212 | 0.5212 | 6.7241 | | 69.6026 | 1.7005 | 600 | 212.0254 | -80.7129 | -0.5569 | 196.9669 | 196.9669 | 196.9669 | 0.5419 | 0.5212 | 0.5212 | 6.6975 | | 69.7829 | 1.8422 | 650 | 222.2766 | -79.4968 | -0.7062 | 209.6782 | 209.6782 | 209.6782 | 0.5404 | 0.5212 | 0.5212 | 6.6541 | | 62.7864 | 1.9839 | 700 | 226.3468 | -80.2667 | -0.6269 | 213.3031 | 213.3031 | 213.3031 | 0.5399 | 0.5212 | 0.5212 | 6.6215 | | 37.3326 | 2.1256 | 750 | 219.7785 | -80.5665 | -0.7007 | 208.8723 | 208.8723 | 208.8723 | 0.5440 | 0.5212 | 0.5212 | 6.7265 | | 33.2099 | 2.2674 | 800 | 221.8786 | -81.8901 | -0.5673 | 207.6881 | 207.6881 | 207.6881 | 0.5450 | 0.5212 | 0.5212 | 6.6717 | | 33.915 | 2.4091 | 850 | 217.6955 | -81.9134 | -0.5178 | 205.0515 | 205.0515 | 205.0515 | 0.5424 | 0.5212 | 0.5212 | 6.7249 | | 35.3572 | 2.5508 | 900 | 224.5402 | -81.5880 | -0.4729 | 214.5052 | 214.5052 | 214.5052 | 0.5435 | 0.5212 | 0.5212 | 6.8278 | | 31.032 | 2.6925 | 950 | 225.2907 | -80.3480 | -0.5542 | 216.5803 | 216.5803 | 216.5803 | 0.5419 | 0.5212 | 0.5212 | 6.8429 | ### Framework versions - Transformers 4.42.0 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1