--- tags: - text-to-image - stable-diffusion language: - en library_name: diffusers --- # IP-Adapter-FaceID Model Card
[**Project Page**](https://ip-adapter.github.io) **|** [**Paper (ArXiv)**](https://arxiv.org/abs/2308.06721) **|** [**Code**](https://github.com/tencent-ailab/IP-Adapter)
--- ## Introduction An experimental version of IP-Adapter-FaceID: we use face ID embedding from a face recognition model instead of CLIP image embedding, additionally, we use LoRA to improve ID consistency. IP-Adapter-FaceID can generate various style images conditioned on a face with only text prompts. ![results](./ip-adapter-faceid.jpg) **Update 2023/12/27**: IP-Adapter-FaceID-Plus: face ID embedding (for face ID) + CLIP image embedding (for face structure)
![results](./faceid-plus.jpg)
**Update 2023/12/28**: IP-Adapter-FaceID-PlusV2: face ID embedding (for face ID) + controllable CLIP image embedding (for face structure) You can adjust the weight of the face structure to get different generation!
![results](./faceid_plusv2.jpg)
## Usage ### IP-Adapter-FaceID Firstly, you should use [insightface](https://github.com/deepinsight/insightface) to extract face ID embedding: ```python import cv2 from insightface.app import FaceAnalysis import torch app = FaceAnalysis(name="buffalo_l", providers=['CUDAExecutionProvider', 'CPUExecutionProvider']) app.prepare(ctx_id=0, det_size=(640, 640)) image = cv2.imread("person.jpg") faces = app.get(image) faceid_embeds = torch.from_numpy(faces[0].normed_embedding).unsqueeze(0) ``` Then, you can generate images conditioned on the face embeddings: ```python import torch from diffusers import StableDiffusionPipeline, DDIMScheduler, AutoencoderKL from PIL import Image from ip_adapter.ip_adapter_faceid import IPAdapterFaceID base_model_path = "SG161222/Realistic_Vision_V4.0_noVAE" vae_model_path = "stabilityai/sd-vae-ft-mse" ip_ckpt = "ip-adapter-faceid_sd15.bin" device = "cuda" noise_scheduler = DDIMScheduler( num_train_timesteps=1000, beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", clip_sample=False, set_alpha_to_one=False, steps_offset=1, ) vae = AutoencoderKL.from_pretrained(vae_model_path).to(dtype=torch.float16) pipe = StableDiffusionPipeline.from_pretrained( base_model_path, torch_dtype=torch.float16, scheduler=noise_scheduler, vae=vae, feature_extractor=None, safety_checker=None ) # load ip-adapter ip_model = IPAdapterFaceID(pipe, ip_ckpt, device) # generate image prompt = "photo of a woman in red dress in a garden" negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality, blurry" images = ip_model.generate( prompt=prompt, negative_prompt=negative_prompt, faceid_embeds=faceid_embeds, num_samples=4, width=512, height=768, num_inference_steps=30, seed=2023 ) ``` ### IP-Adapter-FaceID-Plus Firstly, you should use [insightface](https://github.com/deepinsight/insightface) to extract face ID embedding and face image: ```python import cv2 from insightface.app import FaceAnalysis from insightface.utils import face_align import torch app = FaceAnalysis(name="buffalo_l", providers=['CUDAExecutionProvider', 'CPUExecutionProvider']) app.prepare(ctx_id=0, det_size=(640, 640)) image = cv2.imread("person.jpg") faces = app.get(image) faceid_embeds = torch.from_numpy(faces[0].normed_embedding).unsqueeze(0) face_image = face_align.norm_crop(image, landmark=faces[0].kps, image_size=224) # you can also segment the face ``` Then, you can generate images conditioned on the face embeddings: ```python import torch from diffusers import StableDiffusionPipeline, DDIMScheduler, AutoencoderKL from PIL import Image from ip_adapter.ip_adapter_faceid import IPAdapterFaceIDPlus v2 = False base_model_path = "SG161222/Realistic_Vision_V4.0_noVAE" vae_model_path = "stabilityai/sd-vae-ft-mse" image_encoder_path = "h94/IP-Adapter/models/image_encoder" ip_ckpt = "ip-adapter-faceid-plus_sd15.bin" if not v2 else "ip-adapter-faceid-plusv2_sd15.bin" device = "cuda" noise_scheduler = DDIMScheduler( num_train_timesteps=1000, beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", clip_sample=False, set_alpha_to_one=False, steps_offset=1, ) vae = AutoencoderKL.from_pretrained(vae_model_path).to(dtype=torch.float16) pipe = StableDiffusionPipeline.from_pretrained( base_model_path, torch_dtype=torch.float16, scheduler=noise_scheduler, vae=vae, feature_extractor=None, safety_checker=None ) # load ip-adapter ip_model = IPAdapterFaceIDPlus(pipe, image_encoder_path, ip_ckpt, device) # generate image prompt = "photo of a woman in red dress in a garden" negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality, blurry" images = ip_model.generate( prompt=prompt, negative_prompt=negative_prompt, face_image=face_image, faceid_embeds=faceid_embeds, shortcut=v2, s_scale=1.0, num_samples=4, width=512, height=768, num_inference_steps=30, seed=2023 ) ``` ## Limitations and Bias - The model does not achieve perfect photorealism and ID consistency. - The generalization of the model is limited due to limitations of the training data, base model and face recognition model. ## Non-commercial use **This model is released exclusively for research purposes and is not intended for commercial use.**