hakim
commited on
Commit
·
70ec7b2
1
Parent(s):
8a65935
update readme
Browse files- 1_Pooling/config.json +1 -2
- README.md +139 -43
- config.json +2 -2
1_Pooling/config.json
CHANGED
|
@@ -5,6 +5,5 @@
|
|
| 5 |
"pooling_mode_max_tokens": false,
|
| 6 |
"pooling_mode_mean_sqrt_len_tokens": false,
|
| 7 |
"pooling_mode_weightedmean_tokens": false,
|
| 8 |
-
"pooling_mode_lasttoken": false
|
| 9 |
-
"include_prompt": true
|
| 10 |
}
|
|
|
|
| 5 |
"pooling_mode_max_tokens": false,
|
| 6 |
"pooling_mode_mean_sqrt_len_tokens": false,
|
| 7 |
"pooling_mode_weightedmean_tokens": false,
|
| 8 |
+
"pooling_mode_lasttoken": false
|
|
|
|
| 9 |
}
|
README.md
CHANGED
|
@@ -1,34 +1,54 @@
|
|
| 1 |
---
|
|
|
|
|
|
|
| 2 |
library_name: sentence-transformers
|
| 3 |
-
pipeline_tag:
|
| 4 |
tags:
|
| 5 |
-
- sentence-transformers
|
| 6 |
-
- feature-extraction
|
| 7 |
-
- sentence-similarity
|
| 8 |
-
- transformers
|
| 9 |
datasets:
|
| 10 |
-
- stsb_multi_mt
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
---
|
| 12 |
|
| 13 |
-
|
| 14 |
|
| 15 |
-
|
|
|
|
|
|
|
| 16 |
|
| 17 |
-
|
| 18 |
|
| 19 |
-
|
|
|
|
| 20 |
|
| 21 |
-
|
| 22 |
|
| 23 |
```
|
| 24 |
pip install -U sentence-transformers
|
| 25 |
```
|
| 26 |
|
| 27 |
-
Then you can use the model like this:
|
| 28 |
-
|
| 29 |
```python
|
| 30 |
from sentence_transformers import SentenceTransformer
|
| 31 |
-
sentences = ["
|
| 32 |
|
| 33 |
model = SentenceTransformer('h4c5/sts-distilcamembert-base')
|
| 34 |
embeddings = model.encode(sentences)
|
|
@@ -36,50 +56,86 @@ print(embeddings)
|
|
| 36 |
```
|
| 37 |
|
| 38 |
|
|
|
|
| 39 |
|
| 40 |
-
|
| 41 |
-
|
|
|
|
| 42 |
|
| 43 |
```python
|
| 44 |
from transformers import AutoTokenizer, AutoModel
|
| 45 |
import torch
|
| 46 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
|
| 48 |
-
#Mean Pooling
|
| 49 |
def mean_pooling(model_output, attention_mask):
|
| 50 |
-
token_embeddings = model_output[
|
| 51 |
-
|
| 52 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
|
|
|
|
|
|
|
| 54 |
|
| 55 |
-
# Sentences we want sentence embeddings for
|
| 56 |
-
sentences = ['This is an example sentence', 'Each sentence is converted']
|
| 57 |
|
| 58 |
-
|
| 59 |
-
tokenizer = AutoTokenizer.from_pretrained('h4c5/sts-distilcamembert-base')
|
| 60 |
-
model = AutoModel.from_pretrained('h4c5/sts-distilcamembert-base')
|
| 61 |
|
| 62 |
-
|
| 63 |
-
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
| 64 |
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
|
| 69 |
-
# Perform pooling. In this case, mean pooling.
|
| 70 |
-
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
|
| 71 |
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
|
|
|
|
|
|
|
| 76 |
|
|
|
|
| 77 |
|
| 78 |
-
|
|
|
|
| 79 |
|
| 80 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 81 |
|
| 82 |
-
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=h4c5/sts-distilcamembert-base)
|
| 83 |
|
| 84 |
|
| 85 |
## Training
|
|
@@ -96,11 +152,11 @@ The model was trained with the parameters:
|
|
| 96 |
|
| 97 |
`sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss`
|
| 98 |
|
| 99 |
-
Parameters of the fit()
|
| 100 |
```
|
| 101 |
{
|
| 102 |
"epochs": 10,
|
| 103 |
-
"evaluation_steps":
|
| 104 |
"evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
|
| 105 |
"max_grad_norm": 1,
|
| 106 |
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
|
|
@@ -116,6 +172,7 @@ Parameters of the fit()-Method:
|
|
| 116 |
|
| 117 |
|
| 118 |
## Full Model Architecture
|
|
|
|
| 119 |
```
|
| 120 |
SentenceTransformer(
|
| 121 |
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: CamembertModel
|
|
@@ -123,6 +180,45 @@ SentenceTransformer(
|
|
| 123 |
)
|
| 124 |
```
|
| 125 |
|
| 126 |
-
## Citing
|
| 127 |
-
|
| 128 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
+
language: fr
|
| 3 |
+
license: mit
|
| 4 |
library_name: sentence-transformers
|
| 5 |
+
pipeline_tag: feature-extraction
|
| 6 |
tags:
|
| 7 |
+
- sentence-transformers
|
| 8 |
+
- feature-extraction
|
| 9 |
+
- sentence-similarity
|
| 10 |
+
- transformers
|
| 11 |
datasets:
|
| 12 |
+
- stsb_multi_mt
|
| 13 |
+
metrics:
|
| 14 |
+
- pearsonr
|
| 15 |
+
base_model: almanach/camembert-base
|
| 16 |
+
model-index:
|
| 17 |
+
- name: sts-distilcamembert-base
|
| 18 |
+
results:
|
| 19 |
+
- task:
|
| 20 |
+
name: Sentence Similarity
|
| 21 |
+
type: sentence-similarity
|
| 22 |
+
dataset:
|
| 23 |
+
name: STSb French
|
| 24 |
+
type: stsb_multi_mt
|
| 25 |
+
args: fr
|
| 26 |
+
metrics:
|
| 27 |
+
- name: Pearson Correlation - stsb_multi_mt fr
|
| 28 |
+
type: pearsonr
|
| 29 |
+
value: 0.8165
|
| 30 |
---
|
| 31 |
|
| 32 |
+
## Description
|
| 33 |
|
| 34 |
+
Ce modèle [sentence-transformers](https://www.SBERT.net) a été obtenu en finetunant le modèle
|
| 35 |
+
[`almanach/camembert-base`](https://huggingface.co/almanach/camembert-base) à l'aide de la librairie
|
| 36 |
+
[sentence-transformers](https://www.SBERT.net).
|
| 37 |
|
| 38 |
+
Il permet d'encoder une phrase ou un pararaphe (514 tokens maximum) en un vecteur de dimension 768.
|
| 39 |
|
| 40 |
+
Le modèle [CamemBERT](https://arxiv.org/abs/1911.03894) sur lequel il est basé est un modèle de type RoBERTa qui est
|
| 41 |
+
à l'état de l'art pour la langue française.
|
| 42 |
|
| 43 |
+
## Utilisation via la librairie `sentence-transformers`
|
| 44 |
|
| 45 |
```
|
| 46 |
pip install -U sentence-transformers
|
| 47 |
```
|
| 48 |
|
|
|
|
|
|
|
| 49 |
```python
|
| 50 |
from sentence_transformers import SentenceTransformer
|
| 51 |
+
sentences = ["Ceci est un exemple", "deuxième exemple"]
|
| 52 |
|
| 53 |
model = SentenceTransformer('h4c5/sts-distilcamembert-base')
|
| 54 |
embeddings = model.encode(sentences)
|
|
|
|
| 56 |
```
|
| 57 |
|
| 58 |
|
| 59 |
+
## Utilisation via la librairie `transformers`
|
| 60 |
|
| 61 |
+
```
|
| 62 |
+
pip install -U transformers
|
| 63 |
+
```
|
| 64 |
|
| 65 |
```python
|
| 66 |
from transformers import AutoTokenizer, AutoModel
|
| 67 |
import torch
|
| 68 |
|
| 69 |
+
tokenizer = AutoTokenizer.from_pretrained("h4c5/sts-distilcamembert-base")
|
| 70 |
+
model = AutoModel.from_pretrained("h4c5/sts-distilcamembert-base")
|
| 71 |
+
model.eval()
|
| 72 |
+
|
| 73 |
|
| 74 |
+
# Mean Pooling
|
| 75 |
def mean_pooling(model_output, attention_mask):
|
| 76 |
+
token_embeddings = model_output[
|
| 77 |
+
0
|
| 78 |
+
] # First element of model_output contains all token embeddings
|
| 79 |
+
input_mask_expanded = (
|
| 80 |
+
attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
| 81 |
+
)
|
| 82 |
+
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(
|
| 83 |
+
input_mask_expanded.sum(1), min=1e-9
|
| 84 |
+
)
|
| 85 |
+
|
| 86 |
+
# Tokenization et calcul des embeddings des tokens
|
| 87 |
+
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors="pt")
|
| 88 |
+
model_output = model(**encoded_input)
|
| 89 |
+
|
| 90 |
+
# Mean pooling
|
| 91 |
+
sentence_embeddings = mean_pooling(model_output, encoded_input["attention_mask"])
|
| 92 |
|
| 93 |
+
print(sentence_embeddings)
|
| 94 |
+
```
|
| 95 |
|
|
|
|
|
|
|
| 96 |
|
| 97 |
+
## Evaluation
|
|
|
|
|
|
|
| 98 |
|
| 99 |
+
Le modèle a été évalué sur le jeu de données [STSb fr](https://huggingface.co/datasets/stsb_multi_mt) :
|
|
|
|
| 100 |
|
| 101 |
+
```python
|
| 102 |
+
from datasets import load_dataset
|
| 103 |
+
from sentence_transformers import InputExample, evaluation
|
| 104 |
|
|
|
|
|
|
|
| 105 |
|
| 106 |
+
def dataset_to_input_examples(dataset):
|
| 107 |
+
return [
|
| 108 |
+
InputExample(
|
| 109 |
+
texts=[example["sentence1"], example["sentence2"]],
|
| 110 |
+
label=example["similarity_score"] / 5.0,
|
| 111 |
+
)
|
| 112 |
+
for example in dataset
|
| 113 |
+
]
|
| 114 |
+
|
| 115 |
+
|
| 116 |
+
sts_test_dataset = load_dataset("stsb_multi_mt", name="fr", split="test")
|
| 117 |
+
sts_test_examples = dataset_to_input_examples(sts_test_dataset)
|
| 118 |
+
|
| 119 |
+
sts_test_evaluator = evaluation.EmbeddingSimilarityEvaluator.from_input_examples(
|
| 120 |
+
sts_test_examples, name="sts-test"
|
| 121 |
+
)
|
| 122 |
|
| 123 |
+
sts_test_evaluator(model, ".")
|
| 124 |
+
```
|
| 125 |
|
| 126 |
+
### Résultats
|
| 127 |
|
| 128 |
+
Ci-dessous, les résultats de l'évaluation du modèle sur le jeu données [`stsb_multi_mt`](https://huggingface.co/datasets/stsb_multi_mt)
|
| 129 |
+
(données `fr`, split `test`)
|
| 130 |
|
| 131 |
+
| Model | Pearson Correlation | Paramètres |
|
| 132 |
+
| :--------------------------------------------------------------------------------------------------------------------------------------------- | :-----------------: | ---------: |
|
| 133 |
+
| [`h4c5/sts-camembert-base`](https://huggingface.co/h4c5/sts-camembert-base) | **0.837** | 110M |
|
| 134 |
+
| [`Lajavaness/sentence-camembert-base`](https://huggingface.co/Lajavaness/sentence-camembert-base) | 0.835 | 110M |
|
| 135 |
+
| [`inokufu/flaubert-base-uncased-xnli-sts`](https://huggingface.co/inokufu/flaubert-base-uncased-xnli-sts) | 0.828 | 137M |
|
| 136 |
+
| [`h4c5/sts-distilcamembert-base`](https://huggingface.co/h4c5/sts-distilcamembert-base) | 0.817 | 64M |
|
| 137 |
+
| [`sentence-transformers/distiluse-base-multilingual-cased-v2`](https://huggingface.co/sentence-transformers/distiluse-base-multilingual-cased) | 0.786 | 135M |
|
| 138 |
|
|
|
|
| 139 |
|
| 140 |
|
| 141 |
## Training
|
|
|
|
| 152 |
|
| 153 |
`sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss`
|
| 154 |
|
| 155 |
+
Parameters of the `fit()` method:
|
| 156 |
```
|
| 157 |
{
|
| 158 |
"epochs": 10,
|
| 159 |
+
"evaluation_steps": 1000,
|
| 160 |
"evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
|
| 161 |
"max_grad_norm": 1,
|
| 162 |
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
|
|
|
|
| 172 |
|
| 173 |
|
| 174 |
## Full Model Architecture
|
| 175 |
+
|
| 176 |
```
|
| 177 |
SentenceTransformer(
|
| 178 |
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: CamembertModel
|
|
|
|
| 180 |
)
|
| 181 |
```
|
| 182 |
|
| 183 |
+
## Citing
|
| 184 |
+
|
| 185 |
+
@inproceedings{reimers-2019-sentence-bert,
|
| 186 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
| 187 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
| 188 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
| 189 |
+
month = "11",
|
| 190 |
+
year = "2019",
|
| 191 |
+
publisher = "Association for Computational Linguistics",
|
| 192 |
+
journal={"https://arxiv.org/abs/1908.10084"},
|
| 193 |
+
}
|
| 194 |
+
|
| 195 |
+
@inproceedings{sanh2019distilbert,
|
| 196 |
+
title={DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter},
|
| 197 |
+
author={Sanh, Victor and Debut, Lysandre and Chaumond, Julien and Wolf, Thomas},
|
| 198 |
+
booktitle={NeurIPS EMC^2 Workshop},
|
| 199 |
+
journal={https://arxiv.org/abs/1910.01108},
|
| 200 |
+
year={2019}
|
| 201 |
+
}
|
| 202 |
+
|
| 203 |
+
@inproceedings{martin2020camembert,
|
| 204 |
+
title={CamemBERT: a Tasty French Language Model},
|
| 205 |
+
author={Martin, Louis and Muller, Benjamin and Su{\'a}rez, Pedro Javier Ortiz and Dupont, Yoann and Romary, Laurent and de la Clergerie, {\'E}ric Villemonte and Seddah, Djam{\'e} and Sagot, Beno{\^\i}t},
|
| 206 |
+
booktitle={Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics},
|
| 207 |
+
journal={https://arxiv.org/abs/1911.03894},
|
| 208 |
+
year={2020}
|
| 209 |
+
}
|
| 210 |
+
|
| 211 |
+
@inproceedings{delestre:hal-03674695,
|
| 212 |
+
TITLE = {{DistilCamemBERT : une distillation du mod{\`e}le fran{\c c}ais CamemBERT}},
|
| 213 |
+
AUTHOR = {Delestre, Cyrile and Amar, Abibatou},
|
| 214 |
+
URL = {https://hal.archives-ouvertes.fr/hal-03674695},
|
| 215 |
+
BOOKTITLE = {{CAp (Conf{\'e}rence sur l'Apprentissage automatique)}},
|
| 216 |
+
ADDRESS = {Vannes, France},
|
| 217 |
+
YEAR = {2022},
|
| 218 |
+
MONTH = Jul,
|
| 219 |
+
KEYWORDS = {NLP ; Transformers ; CamemBERT ; Distillation},
|
| 220 |
+
PDF = {https://hal.archives-ouvertes.fr/hal-03674695/file/cap2022.pdf},
|
| 221 |
+
HAL_ID = {hal-03674695},
|
| 222 |
+
HAL_VERSION = {v1},
|
| 223 |
+
journal={https://arxiv.org/abs/2205.11111},
|
| 224 |
+
}
|
config.json
CHANGED
|
@@ -1,5 +1,5 @@
|
|
| 1 |
{
|
| 2 |
-
"_name_or_path": "
|
| 3 |
"architectures": [
|
| 4 |
"CamembertModel"
|
| 5 |
],
|
|
@@ -25,4 +25,4 @@
|
|
| 25 |
"type_vocab_size": 1,
|
| 26 |
"use_cache": true,
|
| 27 |
"vocab_size": 32005
|
| 28 |
-
}
|
|
|
|
| 1 |
{
|
| 2 |
+
"_name_or_path": "h4c5/sts-distilcamembert-base",
|
| 3 |
"architectures": [
|
| 4 |
"CamembertModel"
|
| 5 |
],
|
|
|
|
| 25 |
"type_vocab_size": 1,
|
| 26 |
"use_cache": true,
|
| 27 |
"vocab_size": 32005
|
| 28 |
+
}
|