--- license: cc-by-nc-sa-4.0 base_model: microsoft/layoutlmv3-base tags: - generated_from_trainer datasets: - cord-layoutlmv3 metrics: - precision - recall - f1 - accuracy model-index: - name: layoutlmv3-finetuned-cord_100 results: - task: name: Token Classification type: token-classification dataset: name: cord-layoutlmv3 type: cord-layoutlmv3 config: cord split: test args: cord metrics: - name: Precision type: precision value: 0.9516369047619048 - name: Recall type: recall value: 0.9573353293413174 - name: F1 type: f1 value: 0.9544776119402986 - name: Accuracy type: accuracy value: 0.9630730050933786 --- # layoutlmv3-finetuned-cord_100 This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the cord-layoutlmv3 dataset. It achieves the following results on the evaluation set: - Loss: 0.2085 - Precision: 0.9516 - Recall: 0.9573 - F1: 0.9545 - Accuracy: 0.9631 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 5 - eval_batch_size: 5 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 2500 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.56 | 250 | 1.0211 | 0.7533 | 0.8024 | 0.7771 | 0.8073 | | 1.3874 | 3.12 | 500 | 0.5352 | 0.8488 | 0.8698 | 0.8591 | 0.8778 | | 1.3874 | 4.69 | 750 | 0.3738 | 0.8865 | 0.9124 | 0.8993 | 0.9228 | | 0.3827 | 6.25 | 1000 | 0.2868 | 0.9253 | 0.9364 | 0.9308 | 0.9402 | | 0.3827 | 7.81 | 1250 | 0.2506 | 0.9289 | 0.9394 | 0.9341 | 0.9457 | | 0.2046 | 9.38 | 1500 | 0.2312 | 0.9427 | 0.9484 | 0.9455 | 0.9537 | | 0.2046 | 10.94 | 1750 | 0.2194 | 0.9450 | 0.9513 | 0.9482 | 0.9588 | | 0.1365 | 12.5 | 2000 | 0.2105 | 0.9495 | 0.9566 | 0.9530 | 0.9631 | | 0.1365 | 14.06 | 2250 | 0.2115 | 0.9509 | 0.9573 | 0.9541 | 0.9631 | | 0.1066 | 15.62 | 2500 | 0.2085 | 0.9516 | 0.9573 | 0.9545 | 0.9631 | ### Framework versions - Transformers 4.33.0 - Pytorch 1.12.1+cu116 - Datasets 2.14.4 - Tokenizers 0.12.1