guydebruyn commited on
Commit
b2122e3
·
1 Parent(s): 56d65a7

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v3
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v3
16
+ type: PandaReachDense-v3
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -9.20 +/- 6.28
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v3**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v3**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v3.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dc1fb91376055000327a38e7da40c4a78d3833a19f473d3248925092094d38b9
3
+ size 105332
a2c-PandaReachDense-v3/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.1.0
a2c-PandaReachDense-v3/data ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7faf91d87760>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7faf91d78bc0>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "num_timesteps": 1000000,
23
+ "_total_timesteps": 1000000,
24
+ "_num_timesteps_at_start": 0,
25
+ "seed": null,
26
+ "action_noise": null,
27
+ "start_time": 1694988488964249166,
28
+ "learning_rate": 0.0007,
29
+ "tensorboard_log": null,
30
+ "_last_obs": {
31
+ ":type:": "<class 'collections.OrderedDict'>",
32
+ ":serialized:": "gAWVKwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolgwAAAAAAAAARIAlvlAHRb2jHoY+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolgwAAAAAAAAAIJcVvtu27rw/ZWU9lGgOSwFLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWGAAAAAAAAABEgCW+UAdFvaMehj6y2Ig/ymEnv2D7PT+UaA5LAUsGhpRoEnSUUpR1Lg==",
33
+ "achieved_goal": "[[-0.1616221 -0.04810268 0.2619525 ]]",
34
+ "desired_goal": "[[-0.14608431 -0.02913993 0.05600476]]",
35
+ "observation": "[[-0.1616221 -0.04810268 0.2619525 1.069113 -0.6538359 0.7421169 ]]"
36
+ },
37
+ "_last_episode_starts": {
38
+ ":type:": "<class 'numpy.ndarray'>",
39
+ ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
40
+ },
41
+ "_last_original_obs": null,
42
+ "_episode_num": 0,
43
+ "use_sde": false,
44
+ "sde_sample_freq": -1,
45
+ "_current_progress_remaining": 0.0,
46
+ "_stats_window_size": 100,
47
+ "ep_info_buffer": {
48
+ ":type:": "<class 'collections.deque'>",
49
+ ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwCzb0e2d/ayMAWyUSzKMAXSUR0Cvm9gAyVOcdX2UKGgGR8ApGsHSnccmaAdLMmgIR0CvnDWhIvrXdX2UKGgGR8AgHkTYdyT7aAdLMmgIR0CvnI+QlruZdX2UKGgGR8Amldj5KvmpaAdLMmgIR0CvnOjGkvbodX2UKGgGR8ApXgogFHJ+aAdLMmgIR0CvnUW7OE/TdX2UKGgGR8AwtTpxFRYSaAdLMmgIR0CvnatPP9k0dX2UKGgGR8AwvyTINmUXaAdLMmgIR0CvngUmtyPudX2UKGgGR8AmUHmA9V3maAdLMmgIR0CvnmIR7JGOdX2UKGgGR7+h0KZ2IO6NaAdLAWgIR0CvnmX6ZYxMdX2UKGgGR8AmzLbpNbkfaAdLMmgIR0CvnsFeWv8qdX2UKGgGR8AwO77Kq4pdaAdLMmgIR0Cvnx9oWYWtdX2UKGgGR8AnUa6z3RG+aAdLMmgIR0Cvn4EpAlfJdX2UKGgGR8ApNndweeWfaAdLMmgIR0Cvn9rUb1h9dX2UKGgGR8AhoIl+mWMTaAdLMmgIR0CvoDPStvGZdX2UKGgGR7/QMVDa4+bFaAdLA2gIR0CvoDhkqc3EdX2UKGgGR8AozLEDQqqfaAdLMmgIR0CvoJfFirksdX2UKGgGR8AicCL/CIk7aAdLMmgIR0CvoPaTwDvFdX2UKGgGR8Ao40b961LKaAdLMmgIR0CvoVXiiqQzdX2UKGgGR8Ar9l7MPjGUaAdLMmgIR0Cvod0bDMvAdX2UKGgGR8AnLB9Cu2ZzaAdLMmgIR0CvolM0pEx7dX2UKGgGR8AnjGp++dsjaAdLMmgIR0Cvoqv4ubqhdX2UKGgGR8AmQmP5pJwsaAdLMmgIR0CvowQfQrtmdX2UKGgGR8Ap/fwZwXImaAdLMmgIR0Cvo2E1l5GCdX2UKGgGR8An9fOUt7KJaAdLMmgIR0Cvo8AskIHDdX2UKGgGR8AuLm4Ajps5aAdLMmgIR0CvpB4T0xubdX2UKGgGR8AvIXizcAR1aAdLMmgIR0CvpIHQyAQQdX2UKGgGR7+6W9lEqlP8aAdLAmgIR0CvpIc9GI9DdX2UKGgGR8AwISS/0ulHaAdLMmgIR0CvpORQrMC+dX2UKGgGR7/kAr6LwWnCaAdLBWgIR0CvpO2oNutPdX2UKGgGR8AlCRaouPFOaAdLMmgIR0CvpUxzq8lHdX2UKGgGR8AfxdpqREF4aAdLMmgIR0CvpaXLNfPYdX2UKGgGR8AxztEXtShraAdLMmgIR0Cvpgat1ZDBdX2UKGgGR8AwyCQtBfKIaAdLMmgIR0CvpmXIEKVqdX2UKGgGR8AtqADq4YrKaAdLMmgIR0Cvpr0qpcX4dX2UKGgGR8AqYQEpy6tlaAdLMmgIR0Cvpx/r8iwCdX2UKGgGR7+keU6gdwNtaAdLAWgIR0CvpyHJLdvbdX2UKGgGR8AnCrq+rU9ZaAdLMmgIR0Cvp3wQlKK6dX2UKGgGR7/hVPepGWleaAdLBGgIR0Cvp4QF1SwXdX2UKGgGR8Azy5yU9pyqaAdLMmgIR0Cvp+zC1qnFdX2UKGgGR8AwSot+TeO5aAdLMmgIR0CvqEksSTQmdX2UKGgGR8Ah+KBun/DMaAdLMmgIR0CvqKP8hs68dX2UKGgGR7/SReC04R29aAdLBGgIR0CvqKnmJWNndX2UKGgGR8ApHCAMDwH8aAdLMmgIR0CvqQVNpM6BdX2UKGgGR8AzY9c8kleGaAdLMmgIR0CvqWZ5qubJdX2UKGgGR8AxRfj0cwQEaAdLMmgIR0Cvqc3Ns3yadX2UKGgGR7/em7rcCYCyaAdLBmgIR0Cvqdu63AmBdX2UKGgGR8AmQD8tPHktaAdLMmgIR0CvqjJFCswMdX2UKGgGR8As6nO0LMLXaAdLMmgIR0CvqoyQ5myxdX2UKGgGR8AwxPu5SWJKaAdLMmgIR0CvqvPLX+VDdX2UKGgGR8AsUwjdHlOoaAdLMmgIR0Cvq03K0UoKdX2UKGgGR8ApcY8+zMRpaAdLMmgIR0Cvq6d+ocaPdX2UKGgGR8AiazlcQiA2aAdLMmgIR0CvrAcNpdrwdX2UKGgGR7/GZiNKh+OPaAdLA2gIR0CvrAuL74zrdX2UKGgGR8AlCt4iX6ZZaAdLMmgIR0CvrGlRpDeCdX2UKGgGR8AwGnlGPPszaAdLMmgIR0CvrMXjENvwdX2UKGgGR8Al3vn8sMAnaAdLMmgIR0CvrSCItUXIdX2UKGgGR8Ao5POY6XByaAdLMmgIR0CvrXszVMEidX2UKGgGR7/Ay8jAzpHJaAdLAmgIR0CvrYBXjlxPdX2UKGgGR8AnJqnm7rcCaAdLMmgIR0CvreBV+7UYdX2UKGgGR8AnXc2zfJmvaAdLMmgIR0CvrjZX+2mYdX2UKGgGR8Awwq2SdOIqaAdLMmgIR0CvrrB1klNUdX2UKGgGR8ApVPnjhky2aAdLMmgIR0CvrzdyDIzWdX2UKGgGR8AwJea8Yht+aAdLMmgIR0Cvr8yQPqcFdX2UKGgGR8AuV3L3bmEHaAdLMmgIR0CvsFk3Kji5dX2UKGgGR8Ap08yN4qwyaAdLMmgIR0CvsOBESdvsdX2UKGgGR8AsAeT3Zf2LaAdLMmgIR0CvsXuv2Xb/dX2UKGgGR7/QrwvxpcoqaAdLA2gIR0CvsYL433pOdX2UKGgGR7+oCZF5OafBaAdLAWgIR0CvsYWbobGWdX2UKGgGR8Av4vYe1a4daAdLMmgIR0CvshmUfPondX2UKGgGR8AqbiuuA7PqaAdLMmgIR0CvsqRLsa86dX2UKGgGR8Ay4R6nivPkaAdLMmgIR0CvsxHIIWxhdX2UKGgGR7+kRxtHhCMQaAdLAWgIR0CvsxXRoh6jdX2UKGgGR8ApQT5ftx+8aAdLMmgIR0Cvs3HfuTibdX2UKGgGR7/8URnOB19waAdLCmgIR0Cvs4ok7fYSdX2UKGgGR7/vSBClabF1aAdLDGgIR0Cvs57+kxh2dX2UKGgGR8Ax/BppN9H+aAdLMmgIR0CvtAgsCkoGdX2UKGgGR8AlA/zreIl/aAdLMmgIR0CvtGWmYSg5dX2UKGgGR8AA3NorWiDeaAdLCmgIR0CvtHd2xIJ7dX2UKGgGR8ArF5fMOf/WaAdLMmgIR0CvtNfjCHh1dX2UKGgGR8AlmqR2bG3naAdLMmgIR0CvtTLleWv9dX2UKGgGR7+jFyaNMoMKaAdLAWgIR0CvtTS13MY/dX2UKGgGR8AxLtcv/R3NaAdLMmgIR0CvtZXYL9dedX2UKGgGR8At3JdSl3yJaAdLMmgIR0Cvtfbo0Q9SdX2UKGgGR7+gISlFc6eYaAdLAWgIR0CvtfjArQPadX2UKGgGR7/b7+kxh2GJaAdLBGgIR0CvtgCjcmBwdX2UKGgGR7/TLA57w8W9aAdLBGgIR0CvtgiaiKzidX2UKGgGR8Ar//IbOu7paAdLMmgIR0CvtmtNSIgvdX2UKGgGR8AxwBk7OmiyaAdLMmgIR0Cvts1Y6nzhdX2UKGgGR7/7ktqYZ2pyaAdLC2gIR0CvtuGrCFbndX2UKGgGR8Aw2cCHRCyAaAdLMmgIR0Cvtz2lMyrQdX2UKGgGR8AkGWzF+/g0aAdLMmgIR0Cvt5p3os7NdX2UKGgGR8AkQG4ZuQ6qaAdLMmgIR0Cvt/6KtPpIdX2UKGgGR8AkTIGyHEdeaAdLMmgIR0CvuFiDmKZVdX2UKGgGR8AoOhV2icoZaAdLMmgIR0CvuLN9H+ZPdX2UKGgGR8Amtzo2XLNfaAdLMmgIR0CvuQu2qkuZdX2UKGgGR7/aIN3GGVRlaAdLBGgIR0CvuRNbs4T9dX2UKGgGR8Aw6ePq9oN/aAdLMmgIR0CvuXJY1YQrdX2UKGgGR8AqKkX1rZanaAdLMmgIR0Cvuc49HMEBdX2UKGgGR8AmA1cdHUc5aAdLMmgIR0Cvui/QKKHgdX2UKGgGR8AsuGwiaAnVaAdLMmgIR0CvupF0PpY+dWUu"
50
+ },
51
+ "ep_success_buffer": {
52
+ ":type:": "<class 'collections.deque'>",
53
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
54
+ },
55
+ "_n_updates": 200000,
56
+ "n_steps": 5,
57
+ "gamma": 0.99,
58
+ "gae_lambda": 1.0,
59
+ "ent_coef": 0.0,
60
+ "vf_coef": 0.5,
61
+ "max_grad_norm": 0.5,
62
+ "normalize_advantage": false,
63
+ "observation_space": {
64
+ ":type:": "<class 'gymnasium.spaces.dict.Dict'>",
65
+ ":serialized:": "gAWV/gQAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJSFlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoRooQC+mF+djb2A0Ls7QPzcS8bowDaW5jlIoRBXbUtxYLiBk7TEUc3wmwxQB1jApoYXNfdWludDMylEsAjAh1aW50ZWdlcpRLAHVidWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGWgcKJYDAAAAAAAAAAEBAZRoIEsDhZRoJHSUUpRoJ2gcKJYDAAAAAAAAAAEBAZRoIEsDhZRoJHSUUpRoLEsDhZRoLmgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpRoM2gcKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoJHSUUpRoOIwFLTEwLjCUaDqMBDEwLjCUaDxoP4wFUENHNjSUhZRSlH2UKGhEjAVQQ0c2NJRoRn2UKGhGihAnSksh09KlGLSeubZrVN5zaEiKEUmnvhGcNKCYkTAEHL0JF8wAdWhJSwBoSksAdWJ1YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8aD+MBVBDRzY0lIWUUpR9lChoRIwFUENHNjSUaEZ9lChoRooQNHmee2F7tSvSb6F5bGW6PWhIihDFfFeFiAmCxgWAdys6LEpodWhJSwBoSksAdWJ1YnVoLE5oEE5oPE51Yi4=",
66
+ "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])",
67
+ "_shape": null,
68
+ "dtype": null,
69
+ "_np_random": null
70
+ },
71
+ "action_space": {
72
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
73
+ ":serialized:": "gAWVRgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UjBRudW1weS5yYW5kb20uX3BpY2tsZZSMEF9fZ2VuZXJhdG9yX2N0b3KUk5SMBVBDRzY0lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUjAVQQ0c2NJSMBXN0YXRllH2UKGg7ihHafAXXC74c8E9yV4Hq55OmAIwDaW5jlIoQrdyGhNUPHn8u0b1wkEuED3WMCmhhc191aW50MzKUSwCMCHVpbnRlZ2VylEsAdWJ1Yi4=",
74
+ "dtype": "float32",
75
+ "bounded_below": "[ True True True]",
76
+ "bounded_above": "[ True True True]",
77
+ "_shape": [
78
+ 3
79
+ ],
80
+ "low": "[-1. -1. -1.]",
81
+ "high": "[1. 1. 1.]",
82
+ "low_repr": "-1.0",
83
+ "high_repr": "1.0",
84
+ "_np_random": "Generator(PCG64)"
85
+ },
86
+ "n_envs": 1,
87
+ "lr_schedule": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
90
+ }
91
+ }
a2c-PandaReachDense-v3/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3d2cf29218b1d13e5fe41b9c385722d173a312026f1870314e1a0df610a8380b
3
+ size 44734
a2c-PandaReachDense-v3/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:193df012f1caa1fc2cc7410c2fd619e8079866b6b35a62b16dddc3f2399a558e
3
+ size 46014
a2c-PandaReachDense-v3/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v3/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.1.0
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.29.1
9
+ - OpenAI Gym: 0.25.2
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7faf91d87760>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7faf91d78bc0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1694988488964249166, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVKwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolgwAAAAAAAAARIAlvlAHRb2jHoY+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolgwAAAAAAAAAIJcVvtu27rw/ZWU9lGgOSwFLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWGAAAAAAAAABEgCW+UAdFvaMehj6y2Ig/ymEnv2D7PT+UaA5LAUsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[-0.1616221 -0.04810268 0.2619525 ]]", "desired_goal": "[[-0.14608431 -0.02913993 0.05600476]]", "observation": "[[-0.1616221 -0.04810268 0.2619525 1.069113 -0.6538359 0.7421169 ]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwCzb0e2d/ayMAWyUSzKMAXSUR0Cvm9gAyVOcdX2UKGgGR8ApGsHSnccmaAdLMmgIR0CvnDWhIvrXdX2UKGgGR8AgHkTYdyT7aAdLMmgIR0CvnI+QlruZdX2UKGgGR8Amldj5KvmpaAdLMmgIR0CvnOjGkvbodX2UKGgGR8ApXgogFHJ+aAdLMmgIR0CvnUW7OE/TdX2UKGgGR8AwtTpxFRYSaAdLMmgIR0CvnatPP9k0dX2UKGgGR8AwvyTINmUXaAdLMmgIR0CvngUmtyPudX2UKGgGR8AmUHmA9V3maAdLMmgIR0CvnmIR7JGOdX2UKGgGR7+h0KZ2IO6NaAdLAWgIR0CvnmX6ZYxMdX2UKGgGR8AmzLbpNbkfaAdLMmgIR0CvnsFeWv8qdX2UKGgGR8AwO77Kq4pdaAdLMmgIR0Cvnx9oWYWtdX2UKGgGR8AnUa6z3RG+aAdLMmgIR0Cvn4EpAlfJdX2UKGgGR8ApNndweeWfaAdLMmgIR0Cvn9rUb1h9dX2UKGgGR8AhoIl+mWMTaAdLMmgIR0CvoDPStvGZdX2UKGgGR7/QMVDa4+bFaAdLA2gIR0CvoDhkqc3EdX2UKGgGR8AozLEDQqqfaAdLMmgIR0CvoJfFirksdX2UKGgGR8AicCL/CIk7aAdLMmgIR0CvoPaTwDvFdX2UKGgGR8Ao40b961LKaAdLMmgIR0CvoVXiiqQzdX2UKGgGR8Ar9l7MPjGUaAdLMmgIR0Cvod0bDMvAdX2UKGgGR8AnLB9Cu2ZzaAdLMmgIR0CvolM0pEx7dX2UKGgGR8AnjGp++dsjaAdLMmgIR0Cvoqv4ubqhdX2UKGgGR8AmQmP5pJwsaAdLMmgIR0CvowQfQrtmdX2UKGgGR8Ap/fwZwXImaAdLMmgIR0Cvo2E1l5GCdX2UKGgGR8An9fOUt7KJaAdLMmgIR0Cvo8AskIHDdX2UKGgGR8AuLm4Ajps5aAdLMmgIR0CvpB4T0xubdX2UKGgGR8AvIXizcAR1aAdLMmgIR0CvpIHQyAQQdX2UKGgGR7+6W9lEqlP8aAdLAmgIR0CvpIc9GI9DdX2UKGgGR8AwISS/0ulHaAdLMmgIR0CvpORQrMC+dX2UKGgGR7/kAr6LwWnCaAdLBWgIR0CvpO2oNutPdX2UKGgGR8AlCRaouPFOaAdLMmgIR0CvpUxzq8lHdX2UKGgGR8AfxdpqREF4aAdLMmgIR0CvpaXLNfPYdX2UKGgGR8AxztEXtShraAdLMmgIR0Cvpgat1ZDBdX2UKGgGR8AwyCQtBfKIaAdLMmgIR0CvpmXIEKVqdX2UKGgGR8AtqADq4YrKaAdLMmgIR0Cvpr0qpcX4dX2UKGgGR8AqYQEpy6tlaAdLMmgIR0Cvpx/r8iwCdX2UKGgGR7+keU6gdwNtaAdLAWgIR0CvpyHJLdvbdX2UKGgGR8AnCrq+rU9ZaAdLMmgIR0Cvp3wQlKK6dX2UKGgGR7/hVPepGWleaAdLBGgIR0Cvp4QF1SwXdX2UKGgGR8Azy5yU9pyqaAdLMmgIR0Cvp+zC1qnFdX2UKGgGR8AwSot+TeO5aAdLMmgIR0CvqEksSTQmdX2UKGgGR8Ah+KBun/DMaAdLMmgIR0CvqKP8hs68dX2UKGgGR7/SReC04R29aAdLBGgIR0CvqKnmJWNndX2UKGgGR8ApHCAMDwH8aAdLMmgIR0CvqQVNpM6BdX2UKGgGR8AzY9c8kleGaAdLMmgIR0CvqWZ5qubJdX2UKGgGR8AxRfj0cwQEaAdLMmgIR0Cvqc3Ns3yadX2UKGgGR7/em7rcCYCyaAdLBmgIR0Cvqdu63AmBdX2UKGgGR8AmQD8tPHktaAdLMmgIR0CvqjJFCswMdX2UKGgGR8As6nO0LMLXaAdLMmgIR0CvqoyQ5myxdX2UKGgGR8AwxPu5SWJKaAdLMmgIR0CvqvPLX+VDdX2UKGgGR8AsUwjdHlOoaAdLMmgIR0Cvq03K0UoKdX2UKGgGR8ApcY8+zMRpaAdLMmgIR0Cvq6d+ocaPdX2UKGgGR8AiazlcQiA2aAdLMmgIR0CvrAcNpdrwdX2UKGgGR7/GZiNKh+OPaAdLA2gIR0CvrAuL74zrdX2UKGgGR8AlCt4iX6ZZaAdLMmgIR0CvrGlRpDeCdX2UKGgGR8AwGnlGPPszaAdLMmgIR0CvrMXjENvwdX2UKGgGR8Al3vn8sMAnaAdLMmgIR0CvrSCItUXIdX2UKGgGR8Ao5POY6XByaAdLMmgIR0CvrXszVMEidX2UKGgGR7/Ay8jAzpHJaAdLAmgIR0CvrYBXjlxPdX2UKGgGR8AnJqnm7rcCaAdLMmgIR0CvreBV+7UYdX2UKGgGR8AnXc2zfJmvaAdLMmgIR0CvrjZX+2mYdX2UKGgGR8Awwq2SdOIqaAdLMmgIR0CvrrB1klNUdX2UKGgGR8ApVPnjhky2aAdLMmgIR0CvrzdyDIzWdX2UKGgGR8AwJea8Yht+aAdLMmgIR0Cvr8yQPqcFdX2UKGgGR8AuV3L3bmEHaAdLMmgIR0CvsFk3Kji5dX2UKGgGR8Ap08yN4qwyaAdLMmgIR0CvsOBESdvsdX2UKGgGR8AsAeT3Zf2LaAdLMmgIR0CvsXuv2Xb/dX2UKGgGR7/QrwvxpcoqaAdLA2gIR0CvsYL433pOdX2UKGgGR7+oCZF5OafBaAdLAWgIR0CvsYWbobGWdX2UKGgGR8Av4vYe1a4daAdLMmgIR0CvshmUfPondX2UKGgGR8AqbiuuA7PqaAdLMmgIR0CvsqRLsa86dX2UKGgGR8Ay4R6nivPkaAdLMmgIR0CvsxHIIWxhdX2UKGgGR7+kRxtHhCMQaAdLAWgIR0CvsxXRoh6jdX2UKGgGR8ApQT5ftx+8aAdLMmgIR0Cvs3HfuTibdX2UKGgGR7/8URnOB19waAdLCmgIR0Cvs4ok7fYSdX2UKGgGR7/vSBClabF1aAdLDGgIR0Cvs57+kxh2dX2UKGgGR8Ax/BppN9H+aAdLMmgIR0CvtAgsCkoGdX2UKGgGR8AlA/zreIl/aAdLMmgIR0CvtGWmYSg5dX2UKGgGR8AA3NorWiDeaAdLCmgIR0CvtHd2xIJ7dX2UKGgGR8ArF5fMOf/WaAdLMmgIR0CvtNfjCHh1dX2UKGgGR8AlmqR2bG3naAdLMmgIR0CvtTLleWv9dX2UKGgGR7+jFyaNMoMKaAdLAWgIR0CvtTS13MY/dX2UKGgGR8AxLtcv/R3NaAdLMmgIR0CvtZXYL9dedX2UKGgGR8At3JdSl3yJaAdLMmgIR0Cvtfbo0Q9SdX2UKGgGR7+gISlFc6eYaAdLAWgIR0CvtfjArQPadX2UKGgGR7/b7+kxh2GJaAdLBGgIR0CvtgCjcmBwdX2UKGgGR7/TLA57w8W9aAdLBGgIR0CvtgiaiKzidX2UKGgGR8Ar//IbOu7paAdLMmgIR0CvtmtNSIgvdX2UKGgGR8AxwBk7OmiyaAdLMmgIR0Cvts1Y6nzhdX2UKGgGR7/7ktqYZ2pyaAdLC2gIR0CvtuGrCFbndX2UKGgGR8Aw2cCHRCyAaAdLMmgIR0Cvtz2lMyrQdX2UKGgGR8AkGWzF+/g0aAdLMmgIR0Cvt5p3os7NdX2UKGgGR8AkQG4ZuQ6qaAdLMmgIR0Cvt/6KtPpIdX2UKGgGR8AkTIGyHEdeaAdLMmgIR0CvuFiDmKZVdX2UKGgGR8AoOhV2icoZaAdLMmgIR0CvuLN9H+ZPdX2UKGgGR8Amtzo2XLNfaAdLMmgIR0CvuQu2qkuZdX2UKGgGR7/aIN3GGVRlaAdLBGgIR0CvuRNbs4T9dX2UKGgGR8Aw6ePq9oN/aAdLMmgIR0CvuXJY1YQrdX2UKGgGR8AqKkX1rZanaAdLMmgIR0Cvuc49HMEBdX2UKGgGR8AmA1cdHUc5aAdLMmgIR0Cvui/QKKHgdX2UKGgGR8AsuGwiaAnVaAdLMmgIR0CvupF0PpY+dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 200000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWV/gQAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJSFlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoRooQC+mF+djb2A0Ls7QPzcS8bowDaW5jlIoRBXbUtxYLiBk7TEUc3wmwxQB1jApoYXNfdWludDMylEsAjAh1aW50ZWdlcpRLAHVidWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGWgcKJYDAAAAAAAAAAEBAZRoIEsDhZRoJHSUUpRoJ2gcKJYDAAAAAAAAAAEBAZRoIEsDhZRoJHSUUpRoLEsDhZRoLmgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpRoM2gcKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoJHSUUpRoOIwFLTEwLjCUaDqMBDEwLjCUaDxoP4wFUENHNjSUhZRSlH2UKGhEjAVQQ0c2NJRoRn2UKGhGihAnSksh09KlGLSeubZrVN5zaEiKEUmnvhGcNKCYkTAEHL0JF8wAdWhJSwBoSksAdWJ1YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8aD+MBVBDRzY0lIWUUpR9lChoRIwFUENHNjSUaEZ9lChoRooQNHmee2F7tSvSb6F5bGW6PWhIihDFfFeFiAmCxgWAdys6LEpodWhJSwBoSksAdWJ1YnVoLE5oEE5oPE51Yi4=", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVRgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UjBRudW1weS5yYW5kb20uX3BpY2tsZZSMEF9fZ2VuZXJhdG9yX2N0b3KUk5SMBVBDRzY0lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUjAVQQ0c2NJSMBXN0YXRllH2UKGg7ihHafAXXC74c8E9yV4Hq55OmAIwDaW5jlIoQrdyGhNUPHn8u0b1wkEuED3WMCmhhc191aW50MzKUSwCMCHVpbnRlZ2VylEsAdWJ1Yi4=", "dtype": "float32", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": "Generator(PCG64)"}, "n_envs": 1, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.1.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.1", "OpenAI Gym": "0.25.2"}}
replay.mp4 ADDED
Binary file (813 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -9.20048654899001, "std_reward": 6.282153988610145, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-09-17T23:18:35.311533"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:569343727429aa9453426118090f25ff31ca54e469d0115d2fdd3c78649df67b
3
+ size 2610