--- license: apache-2.0 datasets: - timdettmers/openassistant-guanaco pipeline_tag: text-generation --- Model that is fine-tuned in 4-bit precision using QLoRA on [timdettmers/openassistant-guanaco](https://huggingface.co/datasets/timdettmers/openassistant-guanaco) and sharded to be used on a free Google Colab instance that can be loaded with 4bits. It can be easily imported using the `AutoModelForCausalLM` class from `transformers`: ``` from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained( "guardrail/llama-2-7b-guanaco-instruct-sharded", load_in_4bit=True) tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_guardrail__llama-2-7b-guanaco-instruct-sharded) | Metric | Value | |-----------------------|---------------------------| | Avg. | 44.87 | | ARC (25-shot) | 53.75 | | HellaSwag (10-shot) | 78.69 | | MMLU (5-shot) | 46.65 | | TruthfulQA (0-shot) | 43.93 | | Winogrande (5-shot) | 72.61 | | GSM8K (5-shot) | 7.81 | | DROP (3-shot) | 10.65 |