from transformers import PretrainedConfig, XLMRobertaForSequenceClassification import torch.nn as nn import torch class CustomConfig(PretrainedConfig): model_type = "custom_model" def __init__(self, num_emotion_labels=18, **kwargs): super().__init__(**kwargs) self.num_emotion_labels = num_emotion_labels class CustomModel(PreTrainedModel): config_class = CustomConfig def __init__(self, config, num_emotion_labels): super(CustomModel, self).__init__(config) self.num_emotion_labels = num_emotion_labels self.dropout_emotion = nn.Dropout(config.hidden_dropout_prob) self.emotion_classifier = nn.Sequential( nn.Linear(config.hidden_size, 512), nn.Mish(), nn.Dropout(0.3), nn.Linear(512, num_emotion_labels) ) self._init_weights(self.emotion_classifier[0]) self._init_weights(self.emotion_classifier[3]) def _init_weights(self, module): if isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() def forward(self, input_ids=None, attention_mask=None, sentiment=None, labels=None): outputs = self.roberta(input_ids=input_ids, attention_mask=attention_mask) sequence_output = outputs[0] if len(sequence_output.shape) != 3: raise ValueError(f"Expected sequence_output to have 3 dimensions, got {sequence_output.shape}") cls_hidden_states = sequence_output[:, 0, :] cls_hidden_states = self.dropout_emotion(cls_hidden_states) emotion_logits = self.emotion_classifier(cls_hidden_states) with torch.no_grad(): cls_token_state = sequence_output[:, 0, :].unsqueeze(1) sentiment_logits = self.classifier(cls_token_state).squeeze(1) #logits = torch.cat([sentiment_logits, emotion_logits], dim=-1) if labels is not None: class_weights = torch.tensor([1.0] * self.num_emotion_labels).to(labels.device) loss_fct = nn.BCEWithLogitsLoss(pos_weight=class_weights) loss = loss_fct(emotion_logits, labels) return {"loss": loss, "emotion_logits": emotion_logits, "sentiment_logits": sentiment_logits} return {"emotion_logits": emotion_logits, "sentiment_logits": sentiment_logits} @classmethod def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs): config = kwargs.pop('config', None) if config is None: config = AutoConfig.from_pretrained(pretrained_model_name_or_path, **kwargs) num_emotion_labels = kwargs.pop('num_emotion_labels', config.num_emotion_labels) model = super(CustomModel, cls).from_pretrained(pretrained_model_name_or_path, config=config, num_emotion_labels=num_emotion_labels, *model_args, **kwargs) return model # Register the custom configuration and model CONFIG_MAPPING.update({"custom_model": CustomConfig}) MODEL_MAPPING.update({"custom_model": CustomModel})