from transformers import XLMRobertaForSequenceClassification import torch.nn as nn import torch class CustomModel(XLMRobertaForSequenceClassification): def __init__(self, config, num_emotion_labels): super(CustomModel, self).__init__(config) self.num_emotion_labels = num_emotion_labels # Freeze sentiment classifier parameters for param in self.classifier.parameters(): param.requires_grad = False # Define emotion classifier self.dropout_emotion = nn.Dropout(config.hidden_dropout_prob) self.emotion_classifier = nn.Sequential( nn.Linear(config.hidden_size, 512), nn.Mish(), nn.Dropout(0.3), nn.Linear(512, num_emotion_labels) ) # Initialize the weights of the new layers self._init_weights(self.emotion_classifier[0]) self._init_weights(self.emotion_classifier[3]) def _init_weights(self, module): if isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() def forward(self, input_ids=None, attention_mask=None, sentiment=None, labels=None): outputs = self.roberta(input_ids=input_ids, attention_mask=attention_mask) sequence_output = outputs[0] # Select the CLS token for emotion classification cls_hidden_states = sequence_output[:, 0, :] cls_hidden_states = self.dropout_emotion(cls_hidden_states) emotion_logits = self.emotion_classifier(cls_hidden_states) # Sentiment logits from the frozen classifier with torch.no_grad(): cls_token_state = sequence_output[:, 0, :].unsqueeze(1) sentiment_logits = self.classifier(cls_token_state).squeeze(1) if labels is not None: class_weights = torch.tensor([1.0] * self.num_emotion_labels).to(labels.device) loss_fct = nn.BCEWithLogitsLoss(pos_weight=class_weights) loss = loss_fct(emotion_logits, labels) return {"loss": loss, "emotion_logits": emotion_logits, "sentiment_logits": sentiment_logits} return {"emotion_logits": emotion_logits, "sentiment_logits": sentiment_logits}