--- library_name: transformers license: mit base_model: microsoft/git-base tags: - generated_from_trainer datasets: - imagefolder model-index: - name: git-base-one-entrance-dungeons results: [] --- # git-base-one-entrance-dungeons This model is a fine-tuned version of [microsoft/git-base](https://huggingface.co/microsoft/git-base) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 9.6427 - Wer Score: 102.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Score | |:-------------:|:------:|:----:|:---------------:|:---------:| | 21.0207 | 0.5714 | 1 | 12.1435 | 110.0 | | 9.5856 | 1.7143 | 3 | 10.3902 | 92.4 | | 8.923 | 2.8571 | 5 | 9.9725 | 85.2 | | 8.7018 | 4.0 | 7 | 9.7762 | 97.2 | | 17.1397 | 4.5714 | 8 | 9.7107 | 102.4 | | 6.0772 | 5.7143 | 10 | 9.6427 | 102.0 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.19.1