jonahkaye commited on
Commit
e0dcf7a
·
1 Parent(s): 3b4ba82

timm requirement

Browse files
Files changed (5) hide show
  1. README.md +17 -0
  2. config.json +59 -0
  3. preprocessor_config.json +18 -0
  4. pytorch_model.bin +3 -0
  5. requirements.txt +1 -0
README.md CHANGED
@@ -1,3 +1,20 @@
1
  ---
2
  license: mit
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: mit
3
+ widget:
4
+ - src: https://documentation.tricentis.com/tosca/1420/en/content/tbox/images/table.png
5
+ example_title: Table
6
  ---
7
+
8
+ # Table Transformer (fine-tuned for Table Structure Recognition)
9
+
10
+ Table Transformer (DETR) model trained on PubTables1M. It was introduced in the paper [PubTables-1M: Towards Comprehensive Table Extraction From Unstructured Documents](https://arxiv.org/abs/2110.00061) by Smock et al. and first released in [this repository](https://github.com/microsoft/table-transformer).
11
+
12
+ Disclaimer: The team releasing Table Transformer did not write a model card for this model so this model card has been written by the Hugging Face team.
13
+
14
+ ## Model description
15
+
16
+ The Table Transformer is equivalent to [DETR](https://huggingface.co/docs/transformers/model_doc/detr), a Transformer-based object detection model. Note that the authors decided to use the "normalize before" setting of DETR, which means that layernorm is applied before self- and cross-attention.
17
+
18
+ ## Usage
19
+
20
+ You can use the raw model for detecting the structure (like rows, columns) in tables. See the [documentation](https://huggingface.co/docs/transformers/main/en/model_doc/table-transformer) for more info.
config.json ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "activation_dropout": 0.0,
3
+ "activation_function": "relu",
4
+ "architectures": [
5
+ "TableTransformerForObjectDetection"
6
+ ],
7
+ "attention_dropout": 0.0,
8
+ "auxiliary_loss": false,
9
+ "backbone": "resnet18",
10
+ "bbox_cost": 5,
11
+ "bbox_loss_coefficient": 5,
12
+ "ce_loss_coefficient": 1,
13
+ "class_cost": 1,
14
+ "d_model": 256,
15
+ "decoder_attention_heads": 8,
16
+ "decoder_ffn_dim": 2048,
17
+ "decoder_layerdrop": 0.0,
18
+ "decoder_layers": 6,
19
+ "dice_loss_coefficient": 1,
20
+ "dilation": false,
21
+ "dropout": 0.1,
22
+ "encoder_attention_heads": 8,
23
+ "encoder_ffn_dim": 2048,
24
+ "encoder_layerdrop": 0.0,
25
+ "encoder_layers": 6,
26
+ "eos_coefficient": 0.4,
27
+ "giou_cost": 2,
28
+ "giou_loss_coefficient": 2,
29
+ "id2label": {
30
+ "0": "table",
31
+ "1": "table column",
32
+ "2": "table row",
33
+ "3": "table column header",
34
+ "4": "table projected row header",
35
+ "5": "table spanning cell"
36
+ },
37
+ "init_std": 0.02,
38
+ "init_xavier_std": 1.0,
39
+ "is_encoder_decoder": true,
40
+ "label2id": {
41
+ "table": 0,
42
+ "table column": 1,
43
+ "table column header": 3,
44
+ "table projected row header": 4,
45
+ "table row": 2,
46
+ "table spanning cell": 5
47
+ },
48
+ "mask_loss_coefficient": 1,
49
+ "max_position_embeddings": 1024,
50
+ "model_type": "table-transformer",
51
+ "num_channels": 3,
52
+ "num_hidden_layers": 6,
53
+ "num_queries": 125,
54
+ "position_embedding_type": "sine",
55
+ "scale_embedding": false,
56
+ "torch_dtype": "float32",
57
+ "transformers_version": "4.24.0.dev0",
58
+ "use_pretrained_backbone": true
59
+ }
preprocessor_config.json ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "do_normalize": true,
3
+ "do_resize": true,
4
+ "feature_extractor_type": "DetrFeatureExtractor",
5
+ "format": "coco_detection",
6
+ "image_mean": [
7
+ 0.485,
8
+ 0.456,
9
+ 0.406
10
+ ],
11
+ "image_std": [
12
+ 0.229,
13
+ 0.224,
14
+ 0.225
15
+ ],
16
+ "max_size": 1000,
17
+ "size": 800
18
+ }
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ec887aff5bf24e943a1c090b477e1366b62b6d30c0d9be00759c18f16a688579
3
+ size 115509981
requirements.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ timm