--- license: other base_model: nvidia/mit-b0 tags: - generated_from_trainer model-index: - name: model1 results: [] --- # model1 This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.3138 - Mean Iou: 0.0868 - Mean Accuracy: 0.1217 - Overall Accuracy: 0.2285 - Accuracy Background: nan - Accuracy Ship: 0.1353 - Accuracy Small-vehicle: 0.0001 - Accuracy Tennis-court: 0.7306 - Accuracy Helicopter: nan - Accuracy Basketball-court: 0.0 - Accuracy Ground-track-field: 0.0 - Accuracy Swimming-pool: 0.0 - Accuracy Harbor: 0.5786 - Accuracy Soccer-ball-field: 0.0 - Accuracy Plane: 0.0 - Accuracy Storage-tank: 0.0 - Accuracy Baseball-diamond: 0.0 - Accuracy Large-vehicle: 0.2588 - Accuracy Bridge: 0.0 - Accuracy Roundabout: 0.0 - Iou Background: 0.0 - Iou Ship: 0.0532 - Iou Small-vehicle: 0.0001 - Iou Tennis-court: 0.7062 - Iou Helicopter: nan - Iou Basketball-court: 0.0 - Iou Ground-track-field: 0.0 - Iou Swimming-pool: 0.0 - Iou Harbor: 0.2868 - Iou Soccer-ball-field: 0.0 - Iou Plane: 0.0 - Iou Storage-tank: 0.0 - Iou Baseball-diamond: 0.0 - Iou Large-vehicle: 0.2563 - Iou Bridge: 0.0 - Iou Roundabout: 0.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 1337 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: polynomial - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Background | Accuracy Ship | Accuracy Small-vehicle | Accuracy Tennis-court | Accuracy Helicopter | Accuracy Basketball-court | Accuracy Ground-track-field | Accuracy Swimming-pool | Accuracy Harbor | Accuracy Soccer-ball-field | Accuracy Plane | Accuracy Storage-tank | Accuracy Baseball-diamond | Accuracy Large-vehicle | Accuracy Bridge | Accuracy Roundabout | Iou Background | Iou Ship | Iou Small-vehicle | Iou Tennis-court | Iou Helicopter | Iou Basketball-court | Iou Ground-track-field | Iou Swimming-pool | Iou Harbor | Iou Soccer-ball-field | Iou Plane | Iou Storage-tank | Iou Baseball-diamond | Iou Large-vehicle | Iou Bridge | Iou Roundabout | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------------:|:-------------:|:----------------------:|:---------------------:|:-------------------:|:-------------------------:|:---------------------------:|:----------------------:|:---------------:|:--------------------------:|:--------------:|:---------------------:|:-------------------------:|:----------------------:|:---------------:|:-------------------:|:--------------:|:--------:|:-----------------:|:----------------:|:--------------:|:--------------------:|:----------------------:|:-----------------:|:----------:|:---------------------:|:---------:|:----------------:|:--------------------:|:-----------------:|:----------:|:--------------:| | 2.069 | 1.0 | 105 | 1.4975 | 0.0942 | 0.1496 | 0.2837 | nan | 0.4327 | 0.0002 | 0.8374 | nan | 0.0 | 0.0 | 0.0 | 0.4733 | 0.0002 | 0.0 | 0.0 | 0.0 | 0.3506 | 0.0 | 0.0 | 0.0 | 0.0794 | 0.0002 | 0.7660 | nan | 0.0 | 0.0 | 0.0 | 0.2213 | 0.0002 | 0.0 | 0.0 | 0.0 | 0.3460 | 0.0 | 0.0 | | 1.5141 | 1.9 | 200 | 1.3138 | 0.0868 | 0.1217 | 0.2285 | nan | 0.1353 | 0.0001 | 0.7306 | nan | 0.0 | 0.0 | 0.0 | 0.5786 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2588 | 0.0 | 0.0 | 0.0 | 0.0532 | 0.0001 | 0.7062 | nan | 0.0 | 0.0 | 0.0 | 0.2868 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2563 | 0.0 | 0.0 | ### Framework versions - Transformers 4.35.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.14.1