{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7b526dfbe440>"}, "verbose": 1, "policy_kwargs": {":type:": "", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1689771658112300367, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAPOod7/7wBK+vbgTP02S1L9EPSW/Gh+2v/pAJL39wRQ/iGUdwKSvbT9UyQe/Cd/jvlNh675SJxE/eENtPgRl0b5hf68+Ed2iP0WptD7oYx1AsYsoP0nmBj9yAa++pUvXvaiWbj8WMT0/0L0CPx1Ef78r9n8+Pym7v+yMSL5hfwM/TZ30v2fHvD8IESM/tujpvsatXL4j/WvA3qiKvZTuIcCo6n2+EYVIv4IlG7/t9aY/mJquvw2+TL8Hn28/df4mvuEBCj99lB3ANdAHP+MBAD9QV4m/FjE9P9C9Aj8dRH+/CVgqPVNIIj2nmA4/IANuv7f4979UPkC+NmD0vWtdFboJSyzAffySOwjt9j4gXuI94r+6Pk4gQD4T4A49ueEVP4fQ6D2GnRU/tbQNvuL3hT/Y2c8/AJK4v+KiRb/kRBE/UFeJvxYxPT/QvQI/HUR/v6P3PT90rpU+ci72PhIEo7/3Bwo/vI4aP/zaDr7IME6/BtEuP/nhNUAhuGg/aXysvuWwEkCJk2E/SrwLP0H0lD95PwQ/4HImP7vxw74+P6g+IiIHv0gtpD+ZvqA/7Q+PPqiWbj8vM62/0L0CPzZegD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAMerm2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAOdf2PQAAAAC3UO2/AAAAAOIdAj0AAAAAPB/tPwAAAABJW+i8AAAAAIWoAEAAAAAAfQzyPQAAAADdTt6/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAfsUYtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgEtXgL0AAAAAoan5vwAAAABE9ig8AAAAANQU2T8AAAAAWBVvvQAAAABMiOY/AAAAACLJ4D0AAAAAfDX+vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHRezTUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBmxwi+AAAAAHoB+L8AAAAA6zOSvQAAAACj/vU/AAAAAB3YGz0AAAAACpfmPwAAAABKvyU9AAAAADHE/r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAiPYG0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAn3TUPAAAAADmY+2/AAAAAKfu+L0AAAAAtrf4PwAAAAB9Ggo+AAAAAMkD5T8AAAAAww2nuwAAAACXSgHAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJ3/OzRhMJyMAWyUTegDjAF0lEdAq0z78pCrtHV9lChoBkdAoCNyUkfLcWgHTegDaAhHQKtV0eS0Sh91fZQoaAZHQJ/FahK15SpoB03oA2gIR0CrVf9ph4MXdX2UKGgGR0CgDA89GI9DaAdN6ANoCEdAq1ZXmmtQsXV9lChoBkdAn4qlzQu27WgHTegDaAhHQKtba7NB4Ux1fZQoaAZHQJ3p9SuQp4NoB03oA2gIR0CrYkg1NxlydX2UKGgGR0Cgu1QZXMhYaAdN6ANoCEdAq2J0Q/X5FnV9lChoBkdAm+WK1gH/tWgHTegDaAhHQKti0Xdj5Kx1fZQoaAZHQJ/E1aHKwINoB03oA2gIR0CraJHnuAqedX2UKGgGR0CdblQm/nGLaAdN6ANoCEdAq3KF+PRzBHV9lChoBkdAnbNc6JZW72gHTegDaAhHQKtytLwnYxt1fZQoaAZHQJyxqy3Td+JoB03oA2gIR0Crcw23rleXdX2UKGgGR0CfiT2/BWPtaAdN6ANoCEdAq3g+rU9ZBHV9lChoBkdAmOgkp7TlT2gHTegDaAhHQKt/J0T101Z1fZQoaAZHQJ34ero4dZJoB03oA2gIR0Crf1dycTakdX2UKGgGR0COU/EVFhG6aAdN6ANoCEdAq3+6zkZJkHV9lChoBkdAmWnwWac7Q2gHTegDaAhHQKuE3ar3j+91fZQoaAZHQJiAVKPGQ0ZoB03oA2gIR0CrjpEqMFUydX2UKGgGR0Cb/YhHLA58aAdN6ANoCEdAq47UTi83/HV9lChoBkdAm6gzin5zo2gHTegDaAhHQKuPY5U96kZ1fZQoaAZHQKC7ODAaef9oB03oA2gIR0CrlQjBuXNUdX2UKGgGR0CfVdIOpbUxaAdN6ANoCEdAq5vW606YFHV9lChoBkdAnl3Vd5Y5k2gHTegDaAhHQKucByU9pyp1fZQoaAZHQJ8jdobn5i5oB03oA2gIR0CrnF/MnqmkdX2UKGgGR0CdgKRZlnRLaAdN6ANoCEdAq6F5K8L8aXV9lChoBkdAk+wCwwCbMGgHTegDaAhHQKuqFlU6xPh1fZQoaAZHQJcKYLApKBdoB03oA2gIR0CrqljS5RTCdX2UKGgGR0CfRIxJd0JXaAdN6ANoCEdAq6rlZRsMzHV9lChoBkdAlXB84o7V8WgHTegDaAhHQKuxzDQ7cO91fZQoaAZHQJMridbxEv1oB03oA2gIR0CruK+aScLCdX2UKGgGR0CFA4kKu0TlaAdN6ANoCEdAq7jdapxWDHV9lChoBkdAjamgJkXk52gHTegDaAhHQKu5NXEqDsd1fZQoaAZHQJhkxPsRg7ZoB03oA2gIR0CrvlMJpnHvdX2UKGgGR0CWeLVS4vvjaAdN6ANoCEdAq8W5BHCoCXV9lChoBkdAlYd3gYP5HmgHTegDaAhHQKvF+iblRxd1fZQoaAZHQJVTD8ZUDMhoB03oA2gIR0CrxnvOIInjdX2UKGgGR0CX1O08NhE0aAdN6ANoCEdAq85JsbedkXV9lChoBkdAmvSNWp6yB2gHTegDaAhHQKvVGHX2/SJ1fZQoaAZHQJsi8SqU/wBoB03oA2gIR0Cr1UL2HtWudX2UKGgGR0Cad2vFm4AkaAdN6ANoCEdAq9WZ2KVIJHV9lChoBkdAnMA0NSZSemgHTegDaAhHQKvax2kBS1p1fZQoaAZHQJgfJfgJkXloB03oA2gIR0Cr4Yhr30wrdX2UKGgGR0Ca71FKTSssaAdN6ANoCEdAq+G2DWbw0HV9lChoBkdAnS2Cl3yI6GgHTegDaAhHQKviERuCPIZ1fZQoaAZHQJip3ddmg8NoB03oA2gIR0Cr6Xx2bG3ndX2UKGgGR0CdFzqDsdDIaAdN6ANoCEdAq/IRCY1HfHV9lChoBkdAntWgoTfzjGgHTegDaAhHQKvyPqY7aIx1fZQoaAZHQJ9kcMb3oLZoB03oA2gIR0Cr8pqDkELZdX2UKGgGR0CdTYoCdSVGaAdN6ANoCEdAq/e2RHPNV3V9lChoBkdAnQ4PthNM5GgHTegDaAhHQKv+mT3Zf2N1fZQoaAZHQJsJse4kNWloB03oA2gIR0Cr/sgeJYT1dX2UKGgGR0Ce13h8IAwPaAdN6ANoCEdAq/8gs5GSZHV9lChoBkdAnCyqDGtITWgHTegDaAhHQKwFcV9nbqR1fZQoaAZHQJ2Tqmj0tiBoB03oA2gIR0CsDvnbypaSdX2UKGgGR0CalQky1uzhaAdN6ANoCEdArA8nWQOnVHV9lChoBkdAmRy0CeVcEGgHTegDaAhHQKwPgPU8V591fZQoaAZHQJ0jRJVbRnhoB03oA2gIR0CsFKJRoAXEdX2UKGgGR0CbC3KzAvcraAdN6ANoCEdArBtpsXSBsnV9lChoBkdAkeQT+zdDY2gHTegDaAhHQKwbl7Lt/nZ1fZQoaAZHQJu9KRKYiPhoB03oA2gIR0CsG+/gR9PUdX2UKGgGR0CXm+08vEjxaAdN6ANoCEdArCERrgwXZXV9lChoBkdAmrb8GTs6aWgHTegDaAhHQKwrMrH2h7F1fZQoaAZHQJ16YmlZX+5oB03oA2gIR0CsK3tDlYEGdX2UKGgGR0CbSCHmzSkTaAdN6ANoCEdArCwH5YYBNnV9lChoBkdAmlvPP9kz42gHTegDaAhHQKwxPkvsZ511fZQoaAZHQJqO3V2A5JdoB03oA2gIR0CsOBOxbB42dX2UKGgGR0CcCC5j6N2laAdN6ANoCEdArDhDEJjUeHV9lChoBkdAmGdm+GoJiWgHTegDaAhHQKw4npGnXNF1fZQoaAZHQIRvfq5byH5oB03oA2gIR0CsPchOP/70dX2UKGgGR0Ca1lwztTkyaAdN6ANoCEdArEbWQ6p5vHV9lChoBkdAlzNVRHf/FWgHTegDaAhHQKxHGxTKkmB1fZQoaAZHQJtnUQiA2AJoB03oA2gIR0CsR6gccU/OdX2UKGgGR0CbZVEGqxTsaAdN6ANoCEdArE4cTL4etHV9lChoBkdAm2zU5hjOLWgHTegDaAhHQKxVDAwfyPN1fZQoaAZHQJYUqoAGSp1oB03oA2gIR0CsVTquB+WodX2UKGgGR0CdIpqGlANYaAdN6ANoCEdArFWbi0fHP3V9lChoBkdAnZsROP/7zmgHTegDaAhHQKxawzGgi/x1fZQoaAZHQJ3wockt29toB03oA2gIR0CsYqesHSncdX2UKGgGR0CdTjmpVCHAaAdN6ANoCEdArGLonhKlHnV9lChoBkdAnMCjy4FzMmgHTegDaAhHQKxjeHLRrrR1fZQoaAZHQJ5fIEhaC+VoB03oA2gIR0Csazs0P6KtdX2UKGgGR0Ce94LAYYR/aAdN6ANoCEdArHIf9UCJXXV9lChoBkdAnEzGHDaXbGgHTegDaAhHQKxyTrHEMsp1fZQoaAZHQJ155Y2bXpZoB03oA2gIR0Cscq3/YJ3QdX2UKGgGR0CbvX0uUUwjaAdN6ANoCEdArHffY8Md93V9lChoBkdAndmfYnOSn2gHTegDaAhHQKx+7VrAP/d1fZQoaAZHQJzX26I3zc1oB03oA2gIR0Csfy1mSQo1dX2UKGgGR0CcK94Cp3otaAdN6ANoCEdArH+yXdCVr3V9lChoBkdAmDn/In0CimgHTegDaAhHQKyHeUuctoV1fZQoaAZHQJkQAjrzGxVoB03oA2gIR0Csj0woLG70dX2UKGgGR0CXrRyIYWLxaAdN6ANoCEdArI945aNdaHV9lChoBkdAmFPctbs4UGgHTegDaAhHQKyP0+A3DN11fZQoaAZHQJulRZPl+3JoB03oA2gIR0CslO0DMeOodX2UKGgGR0CbpLa4+bExaAdN6ANoCEdArJu6yrxRVXV9lChoBkdAk/mJNbkfcWgHTegDaAhHQKyb55ftx+91fZQoaAZHQJtggMQVbiZoB03oA2gIR0CsnEDF6zE8dX2UKGgGR0CV/BrBTGYKaAdN6ANoCEdArKMxBE8aGnV9lChoBkdAni/tF8XvY2gHTegDaAhHQKys5o24usd1fZQoaAZHQJkkYqRU3n9oB03oA2gIR0CsrRpVCHARdX2UKGgGR0COca9US7GvaAdN6ANoCEdArK1wsVclgXVlLg=="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.31 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}