--- datasets: - georgiyozhegov/g.arithmetic library_name: transformers license: mit pipeline_tag: text-generation tags: - trl - sft --- Model-calculator. Works well with simple calculations, but fails with complex ones. Here's a 6-million parameters [model](https://huggingface.co/georgiyozhegov/calculator-6m). # Usage ```python import torch from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("georgiyozhegov/calculator-8m") model = AutoModelForCausalLM.from_pretrained("georgiyozhegov/calculator-8m") prompt = "find 2 + 3\nstep" inputs = tokenizer(prompt, return_tensors="pt", return_token_type_ids=False) with torch.no_grad(): outputs = model.generate( input_ids=inputs["input_ids"], attention_mask=inputs["attention_mask"], max_length=32, do_sample=True, top_k=50, top_p=0.98 ) # Cut the rest count = 0 for index, token in enumerate(outputs[0]): if token == 6: count += 1 if count >= 2: break output = tokenizer.decode(outputs[0][:index]) print(output) ```