--- license: other --- ## AIDO.DNA-300M For a more detailed description, refer to the SOTA model in this collection https://huggingface.co/genbio-ai/AIDO.DNA-7B ## How to Use ### Build any downstream models from this backbone with ModelGenerator For more information, visit: [Model Generator](https://github.com/genbio-ai/modelgenerator) ```bash mgen fit --model SequenceClassification --model.backbone aido_dna_300m --data SequenceClassificationDataModule --data.path mgen test --model SequenceClassification --model.backbone aido_dna_300m --data SequenceClassificationDataModule --data.path ``` ### Or use directly in Python #### Embedding ```python from modelgenerator.tasks import Embed model = Embed.from_config({"model.backbone": "aido_dna_300m"}).eval() transformed_batch = model.transform({"sequences": ["ACGT", "AGCT"]}) embedding = model(transformed_batch) print(embedding.shape) print(embedding) ``` #### Sequence Level Classification ```python import torch from modelgenerator.tasks import SequenceClassification model = SequenceClassification.from_config({"model.backbone": "aido_dna_300m", "model.n_classes": 2}).eval() transformed_batch = model.transform({"sequences": ["ACGT", "AGCT"]}) logits = model(transformed_batch) print(logits) print(torch.argmax(logits, dim=-1)) ``` #### Token Level Classification ```python import torch from modelgenerator.tasks import TokenClassification model = TokenClassification.from_config({"model.backbone": "aido_dna_300m", "model.n_classes": 3}).eval() transformed_batch = model.transform({"sequences": ["ACGT", "AGCT"]}) logits = model(transformed_batch) print(logits) print(torch.argmax(logits, dim=-1)) ``` #### Regression ```python from modelgenerator.tasks import SequenceRegression model = SequenceRegression.from_config({"model.backbone": "aido_dna_300m"}).eval() transformed_batch = model.transform({"sequences": ["ACGT", "AGCT"]}) logits = model(transformed_batch) print(logits) ```