--- license: mit base_model: - FacebookAI/roberta-large pipeline_tag: token-classification library_name: transformers tags: - LoRA - Adapter --- # Training This model adapter is designed for token classification tasks, enabling it to extract aspect terms and predict the sentiment polarity associated with the extracted aspect terms. The extracted aspect terms will be the span(s) from the input text on which a sentiment is being expressed. It has been created using [PEFT](https://huggingface.co/docs/peft/index) framework for [LoRA:Low-Rank Adaptation](https://arxiv.org/abs/2106.09685). ## Datasets This model has been trained on the following datasets: 1. Aspect Based Sentiment Analysis SemEval Shared Tasks ([2014](https://aclanthology.org/S14-2004/), [2015](https://aclanthology.org/S15-2082/), [2016](https://aclanthology.org/S16-1002/)) 2. Multi-Aspect Multi-Sentiment [MAMS](https://aclanthology.org/D19-1654/) # Use * Loading the base model and merging it with LoRA parameters ```python from transformers import AutoTokenizer, AutoModelForTokenClassification from peft import PeftModel # preparing the labels labels = {"B-neu": 1, "I-neu": 2, "O": 0, "B-neg": 3, "B-con": 4, "I-pos": 5, "B-pos": 6, "I-con": 7, "I-neg": 8, "X": -100} id2labels = {k:lab for lab, k in labels.items()} labels2ids = {k:lab for lab, k in id2labels.items()} # loading tokenizer and base_model base_id = 'FacebookAI/roberta-large' tokenizer = AutoTokenizer.from_pretrained(base_id) base_model = AutoModelForTokenClassification.from_pretrained(base_id, num_labels=len(labels), id2label=id2labels, label2id=labels2ids) # using this adapter with base model model = PeftModel.from_pretrained(base_model, 'gauneg/roberta-large-absa-ate-sentiment-lora-adapter', is_trainable=False) ``` This model can be utilized in the following two methods: 1. Making token level inference 2. Using pipelines for end to end inference ## Making token level inference ```python # after loading base model and the adapter as shown in the previous snippet text_input = "Been here a few times and food has always been good but service really suffers when it gets crowded." tok_inputs = tokenizer(text_input, return_tensors="pt").to(device) y_pred = model(**tok_inputs) # predicting the logits y_pred_fin = y_pred.logits.argmax(dim=-1)[0] # selecting the most favoured labels for each token from the logits decoded_pred = [id2labels[logx.item()] for logx in y_pred_fin] tok_levl_pred = list(zip(tokenizer.convert_ids_to_tokens(tok_inputs['input_ids'][0]), decoded_pred))[1:-1] ``` RESULTS in `tok_levl_pred` variable: ```bash [('Be', 'O'), ('en', 'O'), ('Ġhere', 'O'), ('Ġa', 'O'), ('Ġfew', 'O'), ('Ġtimes', 'O'), ('Ġand', 'O'), ('Ġfood', 'B-pos'), ('Ġhas', 'O'), ('Ġalways', 'O'), ('Ġbeen', 'O'), ('Ġgood', 'O'), ('Ġbut', 'O'), ('Ġservice', 'B-neg'), ('Ġreally', 'O'), ('Ġsuffers', 'O'), ('Ġwhen', 'O'), ('Ġit', 'O'), ('Ġgets', 'O'), ('Ġcrowded', 'O'), ('.', 'O')] ``` ## Using end-to-end token classification pipeline ```python # after loading base model and the adapter as shown in the previous snippet from transformers import pipeline ate_senti_pipeline = pipeline(task='ner', aggregation_strategy='simple', model=model, tokenizer=tokenizer) text_input = "Been here a few times and food has always been good but service really suffers when it gets crowded." ate_senti_pipeline(text_input) ``` OUTPUT ```bash [{'entity_group': 'pos', 'score': 0.92310727, 'word': ' food', 'start': 26, 'end': 30}, {'entity_group': 'neg', 'score': 0.90695626, 'word': ' service', 'start': 56, 'end': 63}] ```