gaarsmu commited on
Commit
4ef6b05
·
1 Parent(s): 36b5bfb

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1888.42 +/- 105.19
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-spider.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:665cc34cd5c01effe60eb692b240504fa13596fa4a0198bce595117a4dc91037
3
+ size 129265
a2c-spider/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-spider/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f2022d24550>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f2022d245e0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2022d24670>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f2022d24700>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f2022d24790>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f2022d24820>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f2022d248b0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2022d24940>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f2022d249d0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2022d24a60>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f2022d24af0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2022d24b80>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f2022d27200>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 2000000,
63
+ "_total_timesteps": 2000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1679779113830853898,
68
+ "learning_rate": 0.00096,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAKOwnD1IUHq/+ntYvwP1xT6jI7O/ojCJPym5F78LxDU82C9Av2FxnT/Dyqs+jdw/PjR8M7wGG0Y+Q8gXP8IM4T9SB/W+9Ulgvxps4L7lahU+n+eTP7dFhD9mHA4/o88qv/OxNj/Y1jvAROo1PwG0ML/ZILM/XW2EPw1Fdz+HeII88yVZvlrCxz9xRqG/eRFKv8oSez/ajks/OISQPo1oRT4NaIe/A8edva6+DD/M0rO+amKrvyi7eb99eJu/WjeCP/SrVL91Fw68MdzJPvtspr/zsTY/cHKuPkTqNT8BtDC/Sd9BP1+kLD0aEeg+uh0yv6xsn76dwva+hShsvx219L7OrLA+iXokP2jtrj7BBeq+FaeSPypxDz4dR/k+2f8cvgA3tb95npA8PNApPZTUgT93W20/dB9Svljif74qohXA87E2P3Byrj5E6jU/AbQwv1YlsT6PzoC/HPhov8O8OD+jWL6/NT6dPzy33L6ySfS+Ngd4Pnzmjz8CoeY+ybIqv071rL6htv89qxMMP8W8xjz8wXE+TjJRv+KESL/ilIS+1TBiP7EqrT9CF+u99mS+v/OxNj9wcq4+ROo1PwG0ML+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAByUha3AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA8TaGPQAAAACikOe/AAAAAI4F+70AAAAACGPoPwAAAABpUJG9AAAAAGwB7z8AAAAAuLsAPgAAAACpb/e/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaqqLNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgMOuDL4AAAAAqQr4vwAAAADQITe8AAAAAMQtAUAAAAAAapGQvQAAAACcPuQ/AAAAADTn+r0AAAAASnvivwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABUi1TUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAVkz+9AAAAAPkZ378AAAAAU7nBvQAAAACBeeo/AAAAAI8XQLwAAAAAffbhPwAAAABqvQS+AAAAABW68b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAbq8W1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAvr8JPgAAAAAjetq/AAAAAC+4CL0AAAAA5NnYPwAAAAA28gK8AAAAAEMy4T8AAAAAJkfavQAAAADTqe+/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJ6UZYFJQLyMAWyUTegDjAF0lEdAqfiOrsByS3V9lChoBkdAoBI4zP8htGgHTegDaAhHQKn6qbOu7pV1fZQoaAZHQKAAFUgB91FoB03oA2gIR0Cp/8ZpaibldX2UKGgGR0CdpVtBv73xaAdN6ANoCEdAqgNW7jDKo3V9lChoBkdAnrppDu0CzWgHTegDaAhHQKoE8gGKQ7t1fZQoaAZHQKBrIfHPu5VoB03oA2gIR0CqB+bM5fdAdX2UKGgGR0ChGR4qPOpsaAdN6ANoCEdAqg8gXj2i+XV9lChoBkdAoYX1HOKO1mgHTegDaAhHQKoSsi6g/Tt1fZQoaAZHQJ67z9KmKqJoB03oA2gIR0CqE9ns9jgAdX2UKGgGR0ChIFxJmNBGaAdN6ANoCEdAqhXnGdZq23V9lChoBkdAoVfPQD3dsWgHTegDaAhHQKobErsjVx11fZQoaAZHQKFYczLwF1VoB03oA2gIR0CqHrZ39rGjdX2UKGgGR0CeViyHmA9WaAdN6ANoCEdAqh/xjYqXnnV9lChoBkdAnzYwj6eoUGgHTegDaAhHQKoiI2SdOIt1fZQoaAZHQKA+lek56t1oB03oA2gIR0CqKcWcJ+lTdX2UKGgGR0CeQPLncL0BaAdN6ANoCEdAqi3+9FnZkHV9lChoBkdAoCqniLl3hWgHTegDaAhHQKovMA4GUwB1fZQoaAZHQJ9jitQsPJ9oB03oA2gIR0CqMWjaGpMpdX2UKGgGR0CfLSu+h4+saAdN6ANoCEdAqjagb+98JHV9lChoBkdAn1SMvVVghWgHTegDaAhHQKo6HWy1NQF1fZQoaAZHQJ/BANUfgaZoB03oA2gIR0CqO1B/y5I6dX2UKGgGR0Cf4WBzFMqSaAdN6ANoCEdAqj1yS5iEx3V9lChoBkdAoNppylvZRWgHTegDaAhHQKpDzOHnEEV1fZQoaAZHQKCDIydFvydoB03oA2gIR0CqSW4xDb8FdX2UKGgGR0Cg7/30f5k9aAdN6ANoCEdAqkq6r3j+73V9lChoBkdAoTLzpzLfUGgHTegDaAhHQKpMzhQWN3p1fZQoaAZHQKBMenqmj0toB03oA2gIR0CqUeO6VdHEdX2UKGgGR0CgGrNMXaakaAdN6ANoCEdAqlWTjFQ2uXV9lChoBkdAoBG1Net0WGgHTegDaAhHQKpWzNPgvUV1fZQoaAZHQKBJnK3d9DxoB03oA2gIR0CqWODjrAxjdX2UKGgGR0CfwnoS+QEIaAdN6ANoCEdAql5ZNIsiCHV9lChoBkdAnpVOYlY2bWgHTegDaAhHQKpjlcAR02d1fZQoaAZHQKBB04XoC+1oB03oA2gIR0CqZW6sIVuadX2UKGgGR0Chk4hPCVKPaAdN6ANoCEdAqmhXjXFtK3V9lChoBkdAoLlscGTs6mgHTegDaAhHQKptpDk2gnN1fZQoaAZHQKAeGAbyYoloB03oA2gIR0CqcVtm+TNddX2UKGgGR0CgXlKxkd3jaAdN6ANoCEdAqnKWt6ol2XV9lChoBkdAoUxpOJtSAGgHTegDaAhHQKp0wA+6iCd1fZQoaAZHQKEa+Ds+mnBoB03oA2gIR0CqedNQbdaddX2UKGgGR0Cg9NIo/iYLaAdN6ANoCEdAqn5gv6CUYHV9lChoBkdAoIMloexOcmgHTegDaAhHQKqAH+SbH6x1fZQoaAZHQKF0ftb9qDdoB03oA2gIR0Cqg2OIZZSvdX2UKGgGR0Cho6x9PUKBaAdN6ANoCEdAqoleajN6gXV9lChoBkdAoQmLU1AJLWgHTegDaAhHQKqM8loDgZV1fZQoaAZHQKFzboduHetoB03oA2gIR0CqjiTA31jBdX2UKGgGR0Cgehy7f51vaAdN6ANoCEdAqpA7W5H3DnV9lChoBkdAoR+lxsEaEWgHTegDaAhHQKqVZLB9Cu51fZQoaAZHQJ+KOP0Zm7JoB03oA2gIR0CqmRXvx6OYdX2UKGgGR0CgyJH4wh4daAdN6ANoCEdAqpqsfozN2XV9lChoBkdAoT3YyKvV3GgHTegDaAhHQKqdrG1hLGt1fZQoaAZHQKFGYQZGax5oB03oA2gIR0CqpPNBWxQjdX2UKGgGR0Cg7CzSCvovaAdN6ANoCEdAqqiPS0BwM3V9lChoBkdAoGcrHQyAQWgHTegDaAhHQKqpz/G2kSF1fZQoaAZHQKEg1iF0xM5oB03oA2gIR0Cqq/ZOzposdX2UKGgGR0ChY1hFmWdFaAdN6ANoCEdAqrEpFCswL3V9lChoBkdAoKfDA57w8WgHTegDaAhHQKq0zsDW9UV1fZQoaAZHQKDRAc3EQ5FoB03oA2gIR0CqtfWSMcZMdX2UKGgGR0ChtS70OEuhaAdN6ANoCEdAqrhAuM+/xnV9lChoBkdAoe2TCBPKuGgHTegDaAhHQKq/8alUIcB1fZQoaAZHQKJmFhYNiH9oB03oA2gIR0CqxEM2m52AdX2UKGgGR0ChwAE/jbSJaAdN6ANoCEdAqsV9fsu3+nV9lChoBkdAoirNJ17pmmgHTegDaAhHQKrHnakAPup1fZQoaAZHQKIgN80k4WFoB03oA2gIR0CqzN9rGipOdX2UKGgGR0ChbfgjIJZ4aAdN6ANoCEdAqtCKpBHCoHV9lChoBkdAoVSD2SMcZWgHTegDaAhHQKrRwiaAnUl1fZQoaAZHQKIIsp7TlT5oB03oA2gIR0Cq1APhybQUdX2UKGgGR0Cbyey08eS0aAdN6ANoCEdAqtr/ZElVtHV9lChoBkdAmzAoGY8dP2gHTegDaAhHQKrgJMqz7dl1fZQoaAZHQKCWcWSEDhdoB03oA2gIR0Cq4WI065oXdX2UKGgGR0CeV3UDuBtlaAdN6ANoCEdAquN5Grjo6nV9lChoBkdAocVbHuJDV2gHTegDaAhHQKroxjriVB51fZQoaAZHQJzgw00m+kBoB03oA2gIR0Cq7FnfVI7OdX2UKGgGR0ChzyclHBk7aAdN6ANoCEdAqu2EWGh24nV9lChoBkdAoLl+aUiY9mgHTegDaAhHQKrvmGEf1Yh1fZQoaAZHQKEnWorFwUBoB03oA2gIR0Cq9TJaiblSdX2UKGgGR0CepqdvsJIEaAdN6ANoCEdAqvqFvES/TXV9lChoBkdAoS9VnK4hEGgHTegDaAhHQKr8X1nuiN91fZQoaAZHQKEAPVvuPWBoB03oA2gIR0Cq/vckD6nBdX2UKGgGR0CgoKT+m3vyaAdN6ANoCEdAqwQOizsyBXV9lChoBkdAnfnWCdz4lGgHTegDaAhHQKsHpCTlkpZ1fZQoaAZHQJ9jDV+Zw4toB03oA2gIR0CrCM/xc3VDdX2UKGgGR0CeHOc45tFbaAdN6ANoCEdAqwr9G0/nn3V9lChoBkdAl/790Rvm5mgHTegDaAhHQKsQVCZ4Oc51fZQoaAZHQJ/TFm29cr1oB03oA2gIR0CrFP2NedCmdX2UKGgGR0CgNo5hBqsVaAdN6ANoCEdAqxbMY8+zMXV9lChoBkdAoEEeQuEmIGgHTegDaAhHQKsaCPDHfdh1fZQoaAZHQJ8RRXo1UERoB03oA2gIR0CrH6f/vOQhdX2UKGgGR0Cc/DDoQnQZaAdN6ANoCEdAqyNR5eJHiHV9lChoBkdAnN6GlZX+2mgHTegDaAhHQKskiXrMTvl1fZQoaAZHQJooqHHmzSloB03oA2gIR0CrJpx8D0UXdX2UKGgGR0CY+2RuCPIXaAdN6ANoCEdAqyveotL+P3V9lChoBkdAnRzbKRuCPWgHTegDaAhHQKsvec1fmcR1fZQoaAZHQJyEbVwxWT5oB03oA2gIR0CrMTljVhCudX2UKGgGR0Cc6S7fHggpaAdN6ANoCEdAqzRBhMJyAHV9lChoBkdAnpw/gJkXlGgHTegDaAhHQKs7UcSXdCV1fZQoaAZHQJwCNJAdGRVoB03oA2gIR0CrPvcmShaldX2UKGgGR0Cc51YdhiLEaAdN6ANoCEdAq0AZbnoxH3V9lChoBkdAnn8Wf029+WgHTegDaAhHQKtCLP/JeVt1fZQoaAZHQJ1jqC04R29oB03oA2gIR0CrR3x8lXzUdX2UKGgGR0CeBd5lOGj9aAdN6ANoCEdAq0sg+bExZnVlLg=="
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 62500,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-spider/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:594bbe5792b3b7d130822c92f6693c5e81bb309c6b2f87caf77ac0a5966419e6
3
+ size 56190
a2c-spider/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2466956417fe426f969cbcb753132ba7a223776289575ffced4a19d79da09fcf
3
+ size 56958
a2c-spider/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-spider/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f2022d24550>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f2022d245e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2022d24670>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f2022d24700>", "_build": "<function ActorCriticPolicy._build at 0x7f2022d24790>", "forward": "<function ActorCriticPolicy.forward at 0x7f2022d24820>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f2022d248b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2022d24940>", "_predict": "<function ActorCriticPolicy._predict at 0x7f2022d249d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2022d24a60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f2022d24af0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2022d24b80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f2022d27200>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679779113830853898, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAKOwnD1IUHq/+ntYvwP1xT6jI7O/ojCJPym5F78LxDU82C9Av2FxnT/Dyqs+jdw/PjR8M7wGG0Y+Q8gXP8IM4T9SB/W+9Ulgvxps4L7lahU+n+eTP7dFhD9mHA4/o88qv/OxNj/Y1jvAROo1PwG0ML/ZILM/XW2EPw1Fdz+HeII88yVZvlrCxz9xRqG/eRFKv8oSez/ajks/OISQPo1oRT4NaIe/A8edva6+DD/M0rO+amKrvyi7eb99eJu/WjeCP/SrVL91Fw68MdzJPvtspr/zsTY/cHKuPkTqNT8BtDC/Sd9BP1+kLD0aEeg+uh0yv6xsn76dwva+hShsvx219L7OrLA+iXokP2jtrj7BBeq+FaeSPypxDz4dR/k+2f8cvgA3tb95npA8PNApPZTUgT93W20/dB9Svljif74qohXA87E2P3Byrj5E6jU/AbQwv1YlsT6PzoC/HPhov8O8OD+jWL6/NT6dPzy33L6ySfS+Ngd4Pnzmjz8CoeY+ybIqv071rL6htv89qxMMP8W8xjz8wXE+TjJRv+KESL/ilIS+1TBiP7EqrT9CF+u99mS+v/OxNj9wcq4+ROo1PwG0ML+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAByUha3AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA8TaGPQAAAACikOe/AAAAAI4F+70AAAAACGPoPwAAAABpUJG9AAAAAGwB7z8AAAAAuLsAPgAAAACpb/e/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaqqLNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgMOuDL4AAAAAqQr4vwAAAADQITe8AAAAAMQtAUAAAAAAapGQvQAAAACcPuQ/AAAAADTn+r0AAAAASnvivwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABUi1TUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAVkz+9AAAAAPkZ378AAAAAU7nBvQAAAACBeeo/AAAAAI8XQLwAAAAAffbhPwAAAABqvQS+AAAAABW68b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAbq8W1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAvr8JPgAAAAAjetq/AAAAAC+4CL0AAAAA5NnYPwAAAAA28gK8AAAAAEMy4T8AAAAAJkfavQAAAADTqe+/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJ6UZYFJQLyMAWyUTegDjAF0lEdAqfiOrsByS3V9lChoBkdAoBI4zP8htGgHTegDaAhHQKn6qbOu7pV1fZQoaAZHQKAAFUgB91FoB03oA2gIR0Cp/8ZpaibldX2UKGgGR0CdpVtBv73xaAdN6ANoCEdAqgNW7jDKo3V9lChoBkdAnrppDu0CzWgHTegDaAhHQKoE8gGKQ7t1fZQoaAZHQKBrIfHPu5VoB03oA2gIR0CqB+bM5fdAdX2UKGgGR0ChGR4qPOpsaAdN6ANoCEdAqg8gXj2i+XV9lChoBkdAoYX1HOKO1mgHTegDaAhHQKoSsi6g/Tt1fZQoaAZHQJ67z9KmKqJoB03oA2gIR0CqE9ns9jgAdX2UKGgGR0ChIFxJmNBGaAdN6ANoCEdAqhXnGdZq23V9lChoBkdAoVfPQD3dsWgHTegDaAhHQKobErsjVx11fZQoaAZHQKFYczLwF1VoB03oA2gIR0CqHrZ39rGjdX2UKGgGR0CeViyHmA9WaAdN6ANoCEdAqh/xjYqXnnV9lChoBkdAnzYwj6eoUGgHTegDaAhHQKoiI2SdOIt1fZQoaAZHQKA+lek56t1oB03oA2gIR0CqKcWcJ+lTdX2UKGgGR0CeQPLncL0BaAdN6ANoCEdAqi3+9FnZkHV9lChoBkdAoCqniLl3hWgHTegDaAhHQKovMA4GUwB1fZQoaAZHQJ9jitQsPJ9oB03oA2gIR0CqMWjaGpMpdX2UKGgGR0CfLSu+h4+saAdN6ANoCEdAqjagb+98JHV9lChoBkdAn1SMvVVghWgHTegDaAhHQKo6HWy1NQF1fZQoaAZHQJ/BANUfgaZoB03oA2gIR0CqO1B/y5I6dX2UKGgGR0Cf4WBzFMqSaAdN6ANoCEdAqj1yS5iEx3V9lChoBkdAoNppylvZRWgHTegDaAhHQKpDzOHnEEV1fZQoaAZHQKCDIydFvydoB03oA2gIR0CqSW4xDb8FdX2UKGgGR0Cg7/30f5k9aAdN6ANoCEdAqkq6r3j+73V9lChoBkdAoTLzpzLfUGgHTegDaAhHQKpMzhQWN3p1fZQoaAZHQKBMenqmj0toB03oA2gIR0CqUeO6VdHEdX2UKGgGR0CgGrNMXaakaAdN6ANoCEdAqlWTjFQ2uXV9lChoBkdAoBG1Net0WGgHTegDaAhHQKpWzNPgvUV1fZQoaAZHQKBJnK3d9DxoB03oA2gIR0CqWODjrAxjdX2UKGgGR0CfwnoS+QEIaAdN6ANoCEdAql5ZNIsiCHV9lChoBkdAnpVOYlY2bWgHTegDaAhHQKpjlcAR02d1fZQoaAZHQKBB04XoC+1oB03oA2gIR0CqZW6sIVuadX2UKGgGR0Chk4hPCVKPaAdN6ANoCEdAqmhXjXFtK3V9lChoBkdAoLlscGTs6mgHTegDaAhHQKptpDk2gnN1fZQoaAZHQKAeGAbyYoloB03oA2gIR0CqcVtm+TNddX2UKGgGR0CgXlKxkd3jaAdN6ANoCEdAqnKWt6ol2XV9lChoBkdAoUxpOJtSAGgHTegDaAhHQKp0wA+6iCd1fZQoaAZHQKEa+Ds+mnBoB03oA2gIR0CqedNQbdaddX2UKGgGR0Cg9NIo/iYLaAdN6ANoCEdAqn5gv6CUYHV9lChoBkdAoIMloexOcmgHTegDaAhHQKqAH+SbH6x1fZQoaAZHQKF0ftb9qDdoB03oA2gIR0Cqg2OIZZSvdX2UKGgGR0Cho6x9PUKBaAdN6ANoCEdAqoleajN6gXV9lChoBkdAoQmLU1AJLWgHTegDaAhHQKqM8loDgZV1fZQoaAZHQKFzboduHetoB03oA2gIR0CqjiTA31jBdX2UKGgGR0Cgehy7f51vaAdN6ANoCEdAqpA7W5H3DnV9lChoBkdAoR+lxsEaEWgHTegDaAhHQKqVZLB9Cu51fZQoaAZHQJ+KOP0Zm7JoB03oA2gIR0CqmRXvx6OYdX2UKGgGR0CgyJH4wh4daAdN6ANoCEdAqpqsfozN2XV9lChoBkdAoT3YyKvV3GgHTegDaAhHQKqdrG1hLGt1fZQoaAZHQKFGYQZGax5oB03oA2gIR0CqpPNBWxQjdX2UKGgGR0Cg7CzSCvovaAdN6ANoCEdAqqiPS0BwM3V9lChoBkdAoGcrHQyAQWgHTegDaAhHQKqpz/G2kSF1fZQoaAZHQKEg1iF0xM5oB03oA2gIR0Cqq/ZOzposdX2UKGgGR0ChY1hFmWdFaAdN6ANoCEdAqrEpFCswL3V9lChoBkdAoKfDA57w8WgHTegDaAhHQKq0zsDW9UV1fZQoaAZHQKDRAc3EQ5FoB03oA2gIR0CqtfWSMcZMdX2UKGgGR0ChtS70OEuhaAdN6ANoCEdAqrhAuM+/xnV9lChoBkdAoe2TCBPKuGgHTegDaAhHQKq/8alUIcB1fZQoaAZHQKJmFhYNiH9oB03oA2gIR0CqxEM2m52AdX2UKGgGR0ChwAE/jbSJaAdN6ANoCEdAqsV9fsu3+nV9lChoBkdAoirNJ17pmmgHTegDaAhHQKrHnakAPup1fZQoaAZHQKIgN80k4WFoB03oA2gIR0CqzN9rGipOdX2UKGgGR0ChbfgjIJZ4aAdN6ANoCEdAqtCKpBHCoHV9lChoBkdAoVSD2SMcZWgHTegDaAhHQKrRwiaAnUl1fZQoaAZHQKIIsp7TlT5oB03oA2gIR0Cq1APhybQUdX2UKGgGR0Cbyey08eS0aAdN6ANoCEdAqtr/ZElVtHV9lChoBkdAmzAoGY8dP2gHTegDaAhHQKrgJMqz7dl1fZQoaAZHQKCWcWSEDhdoB03oA2gIR0Cq4WI065oXdX2UKGgGR0CeV3UDuBtlaAdN6ANoCEdAquN5Grjo6nV9lChoBkdAocVbHuJDV2gHTegDaAhHQKroxjriVB51fZQoaAZHQJzgw00m+kBoB03oA2gIR0Cq7FnfVI7OdX2UKGgGR0ChzyclHBk7aAdN6ANoCEdAqu2EWGh24nV9lChoBkdAoLl+aUiY9mgHTegDaAhHQKrvmGEf1Yh1fZQoaAZHQKEnWorFwUBoB03oA2gIR0Cq9TJaiblSdX2UKGgGR0CepqdvsJIEaAdN6ANoCEdAqvqFvES/TXV9lChoBkdAoS9VnK4hEGgHTegDaAhHQKr8X1nuiN91fZQoaAZHQKEAPVvuPWBoB03oA2gIR0Cq/vckD6nBdX2UKGgGR0CgoKT+m3vyaAdN6ANoCEdAqwQOizsyBXV9lChoBkdAnfnWCdz4lGgHTegDaAhHQKsHpCTlkpZ1fZQoaAZHQJ9jDV+Zw4toB03oA2gIR0CrCM/xc3VDdX2UKGgGR0CeHOc45tFbaAdN6ANoCEdAqwr9G0/nn3V9lChoBkdAl/790Rvm5mgHTegDaAhHQKsQVCZ4Oc51fZQoaAZHQJ/TFm29cr1oB03oA2gIR0CrFP2NedCmdX2UKGgGR0CgNo5hBqsVaAdN6ANoCEdAqxbMY8+zMXV9lChoBkdAoEEeQuEmIGgHTegDaAhHQKsaCPDHfdh1fZQoaAZHQJ8RRXo1UERoB03oA2gIR0CrH6f/vOQhdX2UKGgGR0Cc/DDoQnQZaAdN6ANoCEdAqyNR5eJHiHV9lChoBkdAnN6GlZX+2mgHTegDaAhHQKskiXrMTvl1fZQoaAZHQJooqHHmzSloB03oA2gIR0CrJpx8D0UXdX2UKGgGR0CY+2RuCPIXaAdN6ANoCEdAqyveotL+P3V9lChoBkdAnRzbKRuCPWgHTegDaAhHQKsvec1fmcR1fZQoaAZHQJyEbVwxWT5oB03oA2gIR0CrMTljVhCudX2UKGgGR0Cc6S7fHggpaAdN6ANoCEdAqzRBhMJyAHV9lChoBkdAnpw/gJkXlGgHTegDaAhHQKs7UcSXdCV1fZQoaAZHQJwCNJAdGRVoB03oA2gIR0CrPvcmShaldX2UKGgGR0Cc51YdhiLEaAdN6ANoCEdAq0AZbnoxH3V9lChoBkdAnn8Wf029+WgHTegDaAhHQKtCLP/JeVt1fZQoaAZHQJ1jqC04R29oB03oA2gIR0CrR3x8lXzUdX2UKGgGR0CeBd5lOGj9aAdN6ANoCEdAq0sg+bExZnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ba1e2a0f8791a1a737d540353d8707f30be4267a1d15e34ace45b366c574041b
3
+ size 1210658
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1888.4213238601574, "std_reward": 105.18749004281993, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-25T22:45:09.100256"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c38632cda3ebb34781396384fa4ac2c6bf84e1d51a5584eb604a387f366abe0b
3
+ size 2136