--- license: mit --- # AnySat: An Earth Observation Model for Any Resolutions, Scales, and Modalities [Guillaume Astruc](https://gastruc.github.io/), [Nicolas Gonthier](https://ngonthier.github.io/), [Clement Mallet](https://www.umr-lastig.fr/clement-mallet/), [Loic Landrieu](https://loiclandrieu.com/) For more details and results, please check out our [github](https://github.com/gastruc/AnySat) and [project page](https://gastruc.github.io/projects/omnisat.html).
# Abstract **AnySat** is a versatile Earth Observation model designed to handle diverse data across resolutions, scales, and modalities. Using a **scale-adaptive joint embedding predictive architecture** (JEPA), AnySat can train in a self-supervised manner on highly heterogeneous datasets. We train a single AnySat model on **GeoPlex**, a collection of 5 multimodal datasets spanning 11 sensors with varying characteristics. In fine-tuning or linear probing, AnySat achieves SOTA or near-SOTA performance for land cover segmentation, crop type classification, change detection, tree species identification, and flood mapping.
# Key Features - 🌍 **Versatile Model**:Handles diverse datasets with resolutions spanning **3–11 channels**, tiles ranging from **0.3 to 2600 hectares**, and any combination of **11 sensors**. - 🚀 **Simple to Use**: Install and download AnySat with a single line of code, select your desired modalities and patch size, and immediately generate rich features. - 🦋 **Flexible Task Adaptation**: Supports fine-tuning and linear probing for tasks like **tile-wise classification** and **semantic segmentation**. - 🧑‍🎓 **Multi-dataset Training**: Trains a single model across multiple datasets with varying characteristics. # 🚀  Quickstart Check out our [demo notebook](demo.ipynb) or [huggingface page](https://huggingface.co/gastruc/anysat) for more details. ## Install and load Anysat ```python import torch AnySat = torch.hub.load('gastruc/anysat', 'anysat', pretrained=True, flash_attn=False) ``` Set `flash_attn=True` if you have [flash-attn](https://pypi.org/project/flash-attn/) module installed. It is not required and only impacts memory and speed. ## Format your data Arrange your data in a dictionary with any of the following keys: | Dataset | Description | Tensor Size | Channels | Resolution | |---------------|-----------------------------------|-----------------------------------------|-------------------------------------------|------------| | aerial | Single date tensor |Bx4xHxW | RGB, NiR | 0.2m | | aerial-flair | Single date tensor |Bx5xHxW | RGB, NiR, Elevation | 0.2m | | spot | Single date tensor |Bx3xHxW | RGB | 1m | | naip | Single date tensor |Bx4xHxW | RGB | 1.25m | | s2 | Time series tensor |BxTx10xHxW | B2, B3, B4, B5, B6, B7, B8, B8a, B11, B12 | 10m | | s1-asc | Time series tensor |BxTx2xHxW | VV, VH | 10m | | s1 | Time series tensor |BxTx3xHxW | VV, VH, Ratio | 10m | | alos | Time series tensor |BxTx3xHxW | HH, HV, Ratio | 30m | | l7 | Time series tensor |BxTx6xHxW | B1, B2, B3, B4, B5, B7 | 30m | | l8 | Time series tensor |BxTx11xHxW | B8, B1, B2, B3, B4, B5, B6, B7, B9, B10, B11 | 10m | | modis | Time series tensor |BxTx7xHxW | B1, B2, B3, B4, B5, B6, B7 | 250m | Note that time series requires a `_dates` companion tensor containing the day of the year: 01/01 = 0, 31/12=364. **Example Input** for a tile of 60x60m and a batch size of B: ```python data = { "aerial": ... #Tensor of size [B, 4, 300, 300] : 4 channels, 300x300 pixels at 20cm res "spot": ... #Tensor of size [B, 3, 60, 60]: 3 channels, 60x60 pixels at 1m res "s2": ... #Tensor of size [B, 12, 10, 6, 6] : 12 dates, 10 channels, 6x6 pixels at 10m res "s2_dates": ... #Tensor of size [B, 12] : 12 dates } ``` Ensure that the spatial extent of each modality multiplied by its resolution is consistent. ## Extract Features Decide on: - **Patch size** (in m, must be a multiple of 10): adjust according to the scale of your tiles and GPU memory. In general, avoid having more than 1024 patches per tile. - **Output type**: Choose between: - `'tile'`: Single vector per tile - `'patch'`: A vector per patch - `'dense'`: A vector per sub-patch - `'all'`: a tuple with all three outputs The sub patches are `1x1` pixels for time series and `10x10` pixels for VHR images. If using `output='dense'`, specify the `output_modality`. Example use: ```python features = AnySat(data, scale=10, output='tile') #tensor of size [D,] features = AnySat(data, scale=10, output='patch') #tensor of size [D,6,6] features = AnySat(data, scale=20, output='patch') #tensor of size [D,3,3] features = AnySat(data, scale=20, output='dense', output_modality='aerial') #tensor of size [D,30,30] ``` **Explanation for the size of the dense map:** `d=10` for 'aerial' which has a 0.2m resolution, the sub-patches are 2x2 m. # Advanced Installation ## Install from source ```bash # clone project git clone https://github.com/gastruc/anysat cd anysat # [OPTIONAL] create conda environment conda create -n anysat python=3.9 conda activate anysat # install requirements pip install -r requirements.txt # Create data folder where you can put your datasets mkdir data # Create logs folder mkdir logs ``` ## Run Locally To load the model locally, you can use the following code: ```python from hubconf import AnySat AnySat = AnySat.from_pretrained('base', flash_attn=False) #Set flash_attn=True if you have flash-attn module installed #For now, only base is available. #device = "cuda" If you want to run on GPU default is cpu ``` Every experience of the paper has its config file. Feel free to explore `configs/exp` folder. ```bash # Run AnySat pretraining on GeoPlex python src/train.py exp=GeoPlex_AnySAT # Run AnySat finetuning on BraDD-S1TS python src/train.py exp=BraDD_AnySAT_FT # Run AnySat linear probing on BraDD-S1TS python src/train.py exp=BraDD_AnySAT_LP ``` # Supported Datasets Our implementation already supports 9 datasets:
## GeoPlex Datasets 1. **TreeSatAI-TS** - **Description**: Multimodal dataset for tree species identification. - **Extent**: 50,381 tiles covering 180 km² with multi-label annotations across 20 classes. - **Modalities**: VHR images (0.2 m), Sentinel-2 time series, Sentinel-1 time series. - **Tasks**: Tree species classification. 2. **PASTIS-HD** - **Description**: Crop mapping dataset with delineated agricultural parcels. - **Extent**: 2,433 tiles covering 3986 km² with annotations across 18 crop types. - **Modalities**: SPOT6/7 VHR imagery (1.5 m), Sentinel-2 time series, Sentinel-1 time series. - **Tasks**: Classification, semantic segmentation, panoptic segmentation. 3. **FLAIR** - **Description**: Land cover dataset combining VHR aerial imagery with Sentinel-2 time series. - **Extent**: 77,762 tiles covering 815 km² with annotations across 13 land cover classes. - **Modalities**: VHR images (0.2 m), Sentinel-2 time series. - **Tasks**: Land cover mapping. 4. **PLANTED** - **Description**: Global forest dataset for tree species identification. - **Extent**: 1,346,662 tiles covering 33,120 km² with annotations across 40 classes. - **Modalities**: Sentinel-2, Landsat-7, MODIS, Sentinel-1, ALOS-2. - **Tasks**: Tree species classification. 5. **S2NAIP-URBAN** - **Description**: Urban dataset with high-resolution imagery and time series data. - **Extent**: 515,270 tiles covering 211,063 km² with NAIP, Sentinel-2, Sentinel-1, and Landsat-8/9 data. - **Modalities**: NAIP (1.25 m), Sentinel-2 time series, Sentinel-1 time series, Landsat-8/9. - **Tasks**: Pretraining only (no official labels). ## External Evaluation Datasets 1. **BraDD-S1TS** - **Description**: Change detection dataset for deforestation in the Amazon rainforest. - **Extent**: 13,234 tiles with Sentinel-1 time series. - **Tasks**: Change detection (deforestation segmentation). 2. **SICKLE** - **Description**: Multimodal crop mapping dataset from India. - **Extent**: 34,848 tiles with Sentinel-1, Sentinel-2, and Landsat-8 time series. - **Tasks**: Crop type classification (paddy/non-paddy). 3. **TimeSen2Crop** - **Description**: Crop mapping dataset from Slovenia. - **Extent**: 1,212,224 single-pixel Sentinel-2 time series. - **Tasks**: Crop type classification. 4. **Sen1Flood11** - **Description**: Flood mapping dataset with global scope. - **Extent**: 4.8K Sentinel-1/2 time series. - **Tasks**: Flood classification (flooded/ not flooded). # Reference Please use the following bibtex: ```bibtex @article{astruc2024anysat, title={{AnySat: An Earth} Observation Model for Any Resolutions, Scales, and Modalities}, author={Astruc, Guillaume and Gonthier, Nicolas and Mallet, Clement and Landrieu, Loic}, journal={arXiv preprint arXiv:2412.XXXX}, year={2024} } ``` # Acknowledgements - The code is conducted on the same base as [OmniSat](https://github.com/gastruc/OmniSat) - The JEPA implementation comes from [JEPA](https://github.com/facebookresearch/ijepa) - The code from Pangaea datasets comes from [Pangaea](https://github.com/VMarsocci/pangaea-bench)