--- library_name: transformers license: mit base_model: neuralmind/bert-base-portuguese-cased tags: - generated_from_trainer model-index: - name: bbau-semeval25_fold4 results: [] --- # bbau-semeval25_fold4 This model is a fine-tuned version of [neuralmind/bert-base-portuguese-cased](https://huggingface.co/neuralmind/bert-base-portuguese-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4458 - Precision Samples: 1.0 - Recall Samples: 0.0 - F1 Samples: 0.0 - Precision Macro: 1.0 - Recall Macro: 0.4091 - F1 Macro: 0.4091 - Precision Micro: 1.0 - Recall Micro: 0.0 - F1 Micro: 0.0 - Precision Weighted: 1.0 - Recall Weighted: 0.0 - F1 Weighted: 0.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision Samples | Recall Samples | F1 Samples | Precision Macro | Recall Macro | F1 Macro | Precision Micro | Recall Micro | F1 Micro | Precision Weighted | Recall Weighted | F1 Weighted | |:-------------:|:-----:|:----:|:---------------:|:-----------------:|:--------------:|:----------:|:---------------:|:------------:|:--------:|:---------------:|:------------:|:--------:|:------------------:|:---------------:|:-----------:| | No log | 1.0 | 5 | 0.6306 | 0.0699 | 0.2911 | 0.1095 | 0.5166 | 0.6006 | 0.2907 | 0.0704 | 0.3585 | 0.1176 | 0.4119 | 0.3585 | 0.1190 | | 0.6408 | 2.0 | 10 | 0.5798 | 0.0481 | 0.1398 | 0.0666 | 0.7414 | 0.4794 | 0.3825 | 0.0505 | 0.1321 | 0.0731 | 0.5897 | 0.1321 | 0.0513 | | 0.6408 | 3.0 | 15 | 0.5419 | 0.05 | 0.0175 | 0.0243 | 0.8951 | 0.4394 | 0.3810 | 0.0326 | 0.0283 | 0.0303 | 0.8880 | 0.0283 | 0.0023 | | 0.5512 | 4.0 | 20 | 0.5123 | 0.0625 | 0.0092 | 0.0143 | 0.9705 | 0.4242 | 0.4106 | 0.0392 | 0.0189 | 0.0255 | 0.9727 | 0.0189 | 0.0018 | | 0.5512 | 5.0 | 25 | 0.4900 | 0.975 | 0.005 | 0.0083 | 0.9924 | 0.4167 | 0.4167 | 0.5 | 0.0094 | 0.0185 | 0.9906 | 0.0094 | 0.0094 | | 0.5002 | 6.0 | 30 | 0.4730 | 1.0 | 0.0 | 0.0 | 1.0 | 0.4091 | 0.4091 | 1.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.5002 | 7.0 | 35 | 0.4612 | 1.0 | 0.0 | 0.0 | 1.0 | 0.4091 | 0.4091 | 1.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.4705 | 8.0 | 40 | 0.4529 | 1.0 | 0.0 | 0.0 | 1.0 | 0.4091 | 0.4091 | 1.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.4705 | 9.0 | 45 | 0.4477 | 1.0 | 0.0 | 0.0 | 1.0 | 0.4091 | 0.4091 | 1.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.4562 | 10.0 | 50 | 0.4458 | 1.0 | 0.0 | 0.0 | 1.0 | 0.4091 | 0.4091 | 1.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | ### Framework versions - Transformers 4.46.0 - Pytorch 2.3.1 - Datasets 2.21.0 - Tokenizers 0.20.1