--- base_model: google/gemma-2-2b library_name: transformers model_name: gemma-2-2b-elyza-tasks-sft tags: - generated_from_trainer - trl - sft licence: license --- # Model Card for gemma-2-2b-elyza-tasks-sft This model is a fine-tuned version of [google/gemma-2-2b](https://huggingface.co/google/gemma-2-2b). It has been trained using [TRL](https://github.com/huggingface/trl). 松尾研LLM講座2024 最終課題で作ったモデル ## How to inference ```python # /// script # requires-python = "3.10" # dependencies = [ # "transformers[torch]", # "datasets", # "peft", # "bitsandbytes<0.44", # ] # /// # import os # from google.colab import userdata # os.environ["HF_TOKEN"] = userdata.get("HF_TOKEN") import torch from datasets import load_dataset from peft import AutoPeftModelForCausalLM from transformers import AutoTokenizer, BitsAndBytesConfig bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.bfloat16, ) model_id = "ftnext/gemma-2-2b-elyza-tasks-sft" tokenizer = AutoTokenizer.from_pretrained(model_id) tokenizer.pad_token = tokenizer.eos_token peft_model = AutoPeftModelForCausalLM.from_pretrained( model_id, quantization_config=bnb_config, device_map={"": 0}, ) dataset = load_dataset("json", data_files="./elyza-tasks-100-TV_0.jsonl", split="train") response_format = "### 応答:\n" def format_prompt(input): return f"以下は、タスクを説明する指示です。要求を適切に満たす応答を書きなさい。\n\n### 指示:\n{input}\n\n{response_format}" @torch.no_grad def infer(example): prompt = format_prompt(example["input"]) inputs = tokenizer(prompt, return_tensors="pt").to("cuda:0") model_output = peft_model.generate(**inputs, max_new_tokens=150) output = tokenizer.decode(model_output[0], skip_special_tokens=True) return {**example, "output": output[len(prompt) :]} inferred_ds = dataset.map(infer) inferred_ds.to_json("submission.jsonl", force_ascii=False) ``` ## Training procedure See https://github.com/ftnext/practice-dl-nlp/blob/552dda69387b53f825bd3b560f4d2e6252cc43b0/llmjp/fine_tuning/gemma_2_2b_elyza_tasks_sft.ipynb This model was trained with SFT. ### Framework versions - TRL: 0.13.0 - Transformers: 4.46.3 - Pytorch: 2.5.1+cu121 - Datasets: 3.2.0 - Tokenizers: 0.20.3 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```