--- base_model: Qwen/Qwen2.5-32B-Instruct library_name: peft license: other tags: - llama-factory - lora - generated_from_trainer model-index: - name: v11 results: [] --- # v11 This model is a fine-tuned version of [Qwen/Qwen2.5-32B-Instruct](https://huggingface.co/Qwen/Qwen2.5-32B-Instruct) on the freede_router dataset. It achieves the following results on the evaluation set: - Loss: 0.2651 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.5e-05 - train_batch_size: 2 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - total_eval_batch_size: 2 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 7.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.7767 | 0.7782 | 50 | 0.7420 | | 0.4193 | 1.5564 | 100 | 0.4160 | | 0.2815 | 2.3346 | 150 | 0.3077 | | 0.2131 | 3.1128 | 200 | 0.2698 | | 0.2117 | 3.8911 | 250 | 0.2534 | | 0.1512 | 4.6693 | 300 | 0.2489 | | 0.1235 | 5.4475 | 350 | 0.2626 | | 0.126 | 6.2451 | 400 | 0.2628 | ### Framework versions - PEFT 0.12.0 - Transformers 4.44.2 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1