--- license: cc-by-nc-4.0 tags: - generated_from_trainer metrics: - wer model-index: - name: wav2vec2-base-finetune-vi-v4 results: [] widget: - example_title: SOICT 2023 - SLU public test 1 src: >- https://huggingface.co/foxxy-hm/wav2vec2-base-finetune-vi-v4/raw/main/audio-test/BA1LQuAP7SlUPuOr8kIQ6Y4.wav - example_title: SOICT 2023 - SLU public test 2 src: >- https://huggingface.co/foxxy-hm/wav2vec2-base-finetune-vi-v4/raw/main/audio-test/lbzKPYnMDWaBeGBvSp7ngxd.wav - example_title: SOICT 2023 - SLU public test 3 src: >- https://huggingface.co/foxxy-hm/wav2vec2-base-finetune-vi-v4/raw/main/audio-test/ZwOTZLm5YSfjMDN3AEEoWvR.wav --- # wav2vec2-base-finetune-vi-v4 This model is a fine-tuned version of [nguyenvulebinh/wav2vec2-base-vietnamese-250h](https://huggingface.co/nguyenvulebinh/wav2vec2-base-vietnamese-250h) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2829 - Wer: 0.1587 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 5.0547 | 0.49 | 500 | 3.4652 | 1.0 | | 2.9133 | 0.99 | 1000 | 1.1003 | 0.5035 | | 1.0644 | 1.48 | 1500 | 0.5960 | 0.3199 | | 0.8294 | 1.98 | 2000 | 0.5098 | 0.2809 | | 0.6965 | 2.47 | 2500 | 0.5010 | 0.2596 | | 0.6646 | 2.96 | 3000 | 0.4209 | 0.2398 | | 0.5753 | 3.46 | 3500 | 0.4089 | 0.2361 | | 0.5265 | 3.95 | 4000 | 0.3868 | 0.2195 | | 0.4701 | 4.45 | 4500 | 0.3626 | 0.2171 | | 0.4617 | 4.94 | 5000 | 0.3693 | 0.2160 | | 0.4343 | 5.43 | 5500 | 0.3661 | 0.2058 | | 0.4246 | 5.93 | 6000 | 0.3618 | 0.2067 | | 0.3881 | 6.42 | 6500 | 0.3654 | 0.2044 | | 0.3948 | 6.92 | 7000 | 0.3586 | 0.2009 | | 0.367 | 7.41 | 7500 | 0.3431 | 0.1961 | | 0.3449 | 7.91 | 8000 | 0.3196 | 0.1944 | | 0.3168 | 8.4 | 8500 | 0.3310 | 0.1912 | | 0.3393 | 8.89 | 9000 | 0.3418 | 0.1879 | | 0.3197 | 9.39 | 9500 | 0.3434 | 0.1888 | | 0.2954 | 9.88 | 10000 | 0.3371 | 0.1863 | | 0.2968 | 10.38 | 10500 | 0.2941 | 0.1899 | | 0.2802 | 10.87 | 11000 | 0.3095 | 0.1836 | | 0.2783 | 11.36 | 11500 | 0.3275 | 0.1822 | | 0.3027 | 11.86 | 12000 | 0.3103 | 0.1806 | | 0.2645 | 12.35 | 12500 | 0.3247 | 0.1842 | | 0.2958 | 12.85 | 13000 | 0.3242 | 0.1801 | | 0.2648 | 13.34 | 13500 | 0.3169 | 0.1775 | | 0.2461 | 13.83 | 14000 | 0.2926 | 0.1764 | | 0.247 | 14.33 | 14500 | 0.3033 | 0.1741 | | 0.2212 | 14.82 | 15000 | 0.2901 | 0.1749 | | 0.2239 | 15.32 | 15500 | 0.3237 | 0.1758 | | 0.2093 | 15.81 | 16000 | 0.2972 | 0.1759 | | 0.2284 | 16.3 | 16500 | 0.3025 | 0.1749 | | 0.228 | 16.8 | 17000 | 0.2862 | 0.1708 | | 0.2033 | 17.29 | 17500 | 0.3039 | 0.1745 | | 0.189 | 17.79 | 18000 | 0.3084 | 0.1708 | | 0.1992 | 18.28 | 18500 | 0.2931 | 0.1735 | | 0.1989 | 18.77 | 19000 | 0.2964 | 0.1693 | | 0.1953 | 19.27 | 19500 | 0.3082 | 0.1715 | | 0.1813 | 19.76 | 20000 | 0.2859 | 0.1702 | | 0.1703 | 20.26 | 20500 | 0.2936 | 0.1680 | | 0.1939 | 20.75 | 21000 | 0.2871 | 0.1684 | | 0.1769 | 21.25 | 21500 | 0.2994 | 0.1646 | | 0.1795 | 21.74 | 22000 | 0.2990 | 0.1669 | | 0.17 | 22.23 | 22500 | 0.2839 | 0.1663 | | 0.1507 | 22.73 | 23000 | 0.3125 | 0.1666 | | 0.1676 | 23.22 | 23500 | 0.2867 | 0.1611 | | 0.1675 | 23.72 | 24000 | 0.3099 | 0.1607 | | 0.171 | 24.21 | 24500 | 0.3000 | 0.1627 | | 0.1483 | 24.7 | 25000 | 0.3010 | 0.1629 | | 0.1452 | 25.2 | 25500 | 0.2910 | 0.1641 | | 0.1394 | 25.69 | 26000 | 0.2878 | 0.1605 | | 0.1478 | 26.19 | 26500 | 0.2881 | 0.1617 | | 0.1426 | 26.68 | 27000 | 0.2714 | 0.1607 | | 0.1342 | 27.17 | 27500 | 0.2941 | 0.1615 | | 0.1385 | 27.67 | 28000 | 0.2758 | 0.1594 | | 0.1541 | 28.16 | 28500 | 0.2830 | 0.1592 | | 0.153 | 28.66 | 29000 | 0.2789 | 0.1575 | | 0.1359 | 29.15 | 29500 | 0.2819 | 0.1588 | | 0.1276 | 29.64 | 30000 | 0.2829 | 0.1587 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.0 - Datasets 2.8.0 - Tokenizers 0.13.3