Upload custom_autotune.py with huggingface_hub
Browse files- custom_autotune.py +167 -0
custom_autotune.py
ADDED
|
@@ -0,0 +1,167 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#https://github.com/fpgaminer/GPTQ-triton
|
| 2 |
+
"""
|
| 3 |
+
Mostly the same as the autotuner in Triton, but with a few changes like using 40 runs instead of 100.
|
| 4 |
+
"""
|
| 5 |
+
|
| 6 |
+
import builtins
|
| 7 |
+
import math
|
| 8 |
+
import time
|
| 9 |
+
from typing import Dict
|
| 10 |
+
|
| 11 |
+
import triton
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
class Autotuner(triton.KernelInterface):
|
| 15 |
+
def __init__(self, fn, arg_names, configs, key, reset_to_zero, prune_configs_by: Dict = None, nearest_power_of_two: bool = False):
|
| 16 |
+
'''
|
| 17 |
+
:param prune_configs_by: a dict of functions that are used to prune configs, fields:
|
| 18 |
+
'perf_model': performance model used to predicate running time with different configs, returns running time
|
| 19 |
+
'top_k': number of configs to bench
|
| 20 |
+
'prune_num_stages_by'(optional): a function used to prune num_stages. It take configs:List[Config] as its input, and returns pruned configs.
|
| 21 |
+
'nearest_power_of_two'(optional): whether to round key arguments to the nearest power of two when caching tuning results
|
| 22 |
+
'''
|
| 23 |
+
if not configs:
|
| 24 |
+
self.configs = [triton.Config({}, num_warps=4, num_stages=2)]
|
| 25 |
+
else:
|
| 26 |
+
self.configs = configs
|
| 27 |
+
self.key_idx = [arg_names.index(k) for k in key]
|
| 28 |
+
self.nearest_power_of_two = nearest_power_of_two
|
| 29 |
+
self.cache = {}
|
| 30 |
+
# hook to reset all required tensor to zeros before relaunching a kernel
|
| 31 |
+
self.hook = lambda args: 0
|
| 32 |
+
if reset_to_zero is not None:
|
| 33 |
+
self.reset_idx = [arg_names.index(k) for k in reset_to_zero]
|
| 34 |
+
|
| 35 |
+
def _hook(args):
|
| 36 |
+
for i in self.reset_idx:
|
| 37 |
+
args[i].zero_()
|
| 38 |
+
self.hook = _hook
|
| 39 |
+
self.arg_names = arg_names
|
| 40 |
+
# prune configs
|
| 41 |
+
if prune_configs_by:
|
| 42 |
+
perf_model, top_k = prune_configs_by['perf_model'], prune_configs_by['top_k']
|
| 43 |
+
if 'early_config_prune' in prune_configs_by:
|
| 44 |
+
early_config_prune = prune_configs_by['early_config_prune']
|
| 45 |
+
else:
|
| 46 |
+
perf_model, top_k, early_config_prune = None, None, None
|
| 47 |
+
self.perf_model, self.configs_top_k = perf_model, top_k
|
| 48 |
+
self.early_config_prune = early_config_prune
|
| 49 |
+
self.fn = fn
|
| 50 |
+
|
| 51 |
+
def _bench(self, *args, config, **meta):
|
| 52 |
+
# check for conflicts, i.e. meta-parameters both provided
|
| 53 |
+
# as kwargs and by the autotuner
|
| 54 |
+
conflicts = meta.keys() & config.kwargs.keys()
|
| 55 |
+
if conflicts:
|
| 56 |
+
raise ValueError(
|
| 57 |
+
f"Conflicting meta-parameters: {', '.join(conflicts)}."
|
| 58 |
+
" Make sure that you don't re-define auto-tuned symbols."
|
| 59 |
+
)
|
| 60 |
+
# augment meta-parameters with tunable ones
|
| 61 |
+
current = dict(meta, **config.kwargs)
|
| 62 |
+
|
| 63 |
+
def kernel_call():
|
| 64 |
+
if config.pre_hook:
|
| 65 |
+
config.pre_hook(self.nargs)
|
| 66 |
+
self.hook(args)
|
| 67 |
+
self.fn.run(*args, num_warps=config.num_warps, num_stages=config.num_stages, **current)
|
| 68 |
+
try:
|
| 69 |
+
# In testings using only 40 reps seems to be close enough and it appears to be what PyTorch uses
|
| 70 |
+
# PyTorch also sets fast_flush to True, but I didn't see any speedup so I'll leave the default
|
| 71 |
+
return triton.testing.do_bench(kernel_call, rep=40)
|
| 72 |
+
except triton.compiler.OutOfResources:
|
| 73 |
+
return float('inf')
|
| 74 |
+
|
| 75 |
+
def run(self, *args, **kwargs):
|
| 76 |
+
self.nargs = dict(zip(self.arg_names, args))
|
| 77 |
+
if len(self.configs) > 1:
|
| 78 |
+
key = tuple(args[i] for i in self.key_idx)
|
| 79 |
+
|
| 80 |
+
# This reduces the amount of autotuning by rounding the keys to the nearest power of two
|
| 81 |
+
# In my testing this gives decent results, and greatly reduces the amount of tuning required
|
| 82 |
+
if self.nearest_power_of_two:
|
| 83 |
+
key = tuple([2 ** int(math.log2(x) + 0.5) for x in key])
|
| 84 |
+
|
| 85 |
+
if key not in self.cache:
|
| 86 |
+
# prune configs
|
| 87 |
+
pruned_configs = self.prune_configs(kwargs)
|
| 88 |
+
bench_start = time.time()
|
| 89 |
+
timings = {config: self._bench(*args, config=config, **kwargs)
|
| 90 |
+
for config in pruned_configs}
|
| 91 |
+
bench_end = time.time()
|
| 92 |
+
self.bench_time = bench_end - bench_start
|
| 93 |
+
self.cache[key] = builtins.min(timings, key=timings.get)
|
| 94 |
+
self.hook(args)
|
| 95 |
+
self.configs_timings = timings
|
| 96 |
+
config = self.cache[key]
|
| 97 |
+
else:
|
| 98 |
+
config = self.configs[0]
|
| 99 |
+
self.best_config = config
|
| 100 |
+
if config.pre_hook is not None:
|
| 101 |
+
config.pre_hook(self.nargs)
|
| 102 |
+
return self.fn.run(*args, num_warps=config.num_warps, num_stages=config.num_stages, **kwargs, **config.kwargs)
|
| 103 |
+
|
| 104 |
+
def prune_configs(self, kwargs):
|
| 105 |
+
pruned_configs = self.configs
|
| 106 |
+
if self.early_config_prune:
|
| 107 |
+
pruned_configs = self.early_config_prune(self.configs, self.nargs)
|
| 108 |
+
if self.perf_model:
|
| 109 |
+
top_k = self.configs_top_k
|
| 110 |
+
if isinstance(top_k, float) and top_k <= 1.0:
|
| 111 |
+
top_k = int(len(self.configs) * top_k)
|
| 112 |
+
if len(pruned_configs) > top_k:
|
| 113 |
+
est_timing = {
|
| 114 |
+
config: self.perf_model(**self.nargs, **kwargs, **config.kwargs, num_stages=config.num_stages,
|
| 115 |
+
num_warps=config.num_warps)
|
| 116 |
+
for config in pruned_configs
|
| 117 |
+
}
|
| 118 |
+
pruned_configs = sorted(est_timing.keys(), key=lambda x: est_timing[x])[:top_k]
|
| 119 |
+
return pruned_configs
|
| 120 |
+
|
| 121 |
+
def warmup(self, *args, **kwargs):
|
| 122 |
+
self.nargs = dict(zip(self.arg_names, args))
|
| 123 |
+
for config in self.prune_configs(kwargs):
|
| 124 |
+
self.fn.warmup(
|
| 125 |
+
*args,
|
| 126 |
+
num_warps=config.num_warps,
|
| 127 |
+
num_stages=config.num_stages,
|
| 128 |
+
**kwargs,
|
| 129 |
+
**config.kwargs,
|
| 130 |
+
)
|
| 131 |
+
self.nargs = None
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
def autotune(configs, key, prune_configs_by=None, reset_to_zero=None, nearest_power_of_two=False):
|
| 135 |
+
"""
|
| 136 |
+
Decorator for auto-tuning a :code:`triton.jit`'d function.
|
| 137 |
+
.. highlight:: python
|
| 138 |
+
.. code-block:: python
|
| 139 |
+
@triton.autotune(configs=[
|
| 140 |
+
triton.Config(meta={'BLOCK_SIZE': 128}, num_warps=4),
|
| 141 |
+
triton.Config(meta={'BLOCK_SIZE': 1024}, num_warps=8),
|
| 142 |
+
],
|
| 143 |
+
key=['x_size'] # the two above configs will be evaluated anytime
|
| 144 |
+
# the value of x_size changes
|
| 145 |
+
)
|
| 146 |
+
@triton.jit
|
| 147 |
+
def kernel(x_ptr, x_size, **META):
|
| 148 |
+
BLOCK_SIZE = META['BLOCK_SIZE']
|
| 149 |
+
:note: When all the configurations are evaluated, the kernel will run multiple time.
|
| 150 |
+
This means that whatever value the kernel updates will be updated multiple times.
|
| 151 |
+
To avoid this undesired behavior, you can use the `reset_to_zero` argument, which
|
| 152 |
+
reset the value of the provided tensor to `zero` before running any configuration.
|
| 153 |
+
:param configs: a list of :code:`triton.Config` objects
|
| 154 |
+
:type configs: list[triton.Config]
|
| 155 |
+
:param key: a list of argument names whose change in value will trigger the evaluation of all provided configs.
|
| 156 |
+
:type key: list[str]
|
| 157 |
+
:param prune_configs_by: a dict of functions that are used to prune configs, fields:
|
| 158 |
+
'perf_model': performance model used to predicate running time with different configs, returns running time
|
| 159 |
+
'top_k': number of configs to bench
|
| 160 |
+
'early_config_prune'(optional): a function used to do early prune (eg, num_stages). It take configs:List[Config] as its input, and returns pruned configs.
|
| 161 |
+
:param reset_to_zero: a list of argument names whose value will be reset to zero before evaluating any configs.
|
| 162 |
+
:type reset_to_zero: list[str]
|
| 163 |
+
"""
|
| 164 |
+
def decorator(fn):
|
| 165 |
+
return Autotuner(fn, fn.arg_names, configs, key, reset_to_zero, prune_configs_by, nearest_power_of_two)
|
| 166 |
+
|
| 167 |
+
return decorator
|