--- license: apache-2.0 tags: - merge - mergekit - lazymergekit - nfaheem/Marcoroni-7b-DPO-Merge - EmbeddedLLM/Mistral-7B-Merge-14-v0.5 base_model: - nfaheem/Marcoroni-7b-DPO-Merge - EmbeddedLLM/Mistral-7B-Merge-14-v0.5 --- # MarcMistral-7B MarcMistral-7B is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [nfaheem/Marcoroni-7b-DPO-Merge](https://huggingface.co/nfaheem/Marcoroni-7b-DPO-Merge) * [EmbeddedLLM/Mistral-7B-Merge-14-v0.5](https://huggingface.co/EmbeddedLLM/Mistral-7B-Merge-14-v0.5) As an experiment to find the best base merge to further fine-tuning, expect a lot of experiments named using parts of the component models until a clear winner emerges in the benchmarks In this case merging the highest MMLU merge with a high ARC merge to see which qualities remain untouched or improv ## 🧩 Configuration ```yaml slices: - sources: - model: nfaheem/Marcoroni-7b-DPO-Merge layer_range: [0, 32] - model: EmbeddedLLM/Mistral-7B-Merge-14-v0.5 layer_range: [0, 32] merge_method: slerp base_model: EmbeddedLLM/Mistral-7B-Merge-14-v0.5 parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 # fallback for rest of tensors tokenizer_source: union dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "flemmingmiguel/MarcMistral-7B" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```