--- tags: - flair - token-classification - sequence-tagger-model language: en de nl es datasets: - conll2003 inference: false --- ## 4-Language NER in Flair (English, German, Dutch and Spanish) This is the fast 4-class NER model for 4 CoNLL-03 languages that ships with [Flair](https://github.com/flairNLP/flair/). Also kind of works for related languages like French. F1-Score: **91,51** (CoNLL-03 English), **85,72** (CoNLL-03 German revised), **86,22** (CoNLL-03 Dutch), **85,78** (CoNLL-03 Spanish) Predicts 4 tags: | **tag** | **meaning** | |---------------------------------|-----------| | PER | person name | | LOC | location name | | ORG | organization name | | MISC | other name | Based on [Flair embeddings](https://www.aclweb.org/anthology/C18-1139/) and LSTM-CRF. --- ### Demo: How to use in Flair Requires: **[Flair](https://github.com/flairNLP/flair/)** (`pip install flair`) ```python from flair.data import Sentence from flair.models import SequenceTagger # load tagger tagger = SequenceTagger.load("flair/ner-multi-fast") # make example sentence in any of the four languages sentence = Sentence("George Washington ging nach Washington") # predict NER tags tagger.predict(sentence) # print sentence print(sentence) # print predicted NER spans print('The following NER tags are found:') # iterate over entities and print for entity in sentence.get_spans('ner'): print(entity) ``` This yields the following output: ``` Span [1,2]: "George Washington" [− Labels: PER (0.9977)] Span [5]: "Washington" [− Labels: LOC (0.9895)] ``` So, the entities "*George Washington*" (labeled as a **person**) and "*Washington*" (labeled as a **location**) are found in the sentence "*George Washington ging nach Washington*". --- ### Training: Script to train this model The following Flair script was used to train this model: ```python from flair.data import Corpus from flair.datasets import CONLL_03, CONLL_03_GERMAN, CONLL_03_DUTCH, CONLL_03_SPANISH from flair.embeddings import WordEmbeddings, StackedEmbeddings, FlairEmbeddings # 1. get the multi-language corpus corpus: Corpus = MultiCorpus([ CONLL_03(), # English corpus CONLL_03_GERMAN(), # German corpus CONLL_03_DUTCH(), # Dutch corpus CONLL_03_SPANISH(), # Spanish corpus ]) # 2. what tag do we want to predict? tag_type = 'ner' # 3. make the tag dictionary from the corpus tag_dictionary = corpus.make_tag_dictionary(tag_type=tag_type) # 4. initialize each embedding we use embedding_types = [ # GloVe embeddings WordEmbeddings('glove'), # FastText embeddings WordEmbeddings('de'), # contextual string embeddings, forward FlairEmbeddings('multi-forward-fast'), # contextual string embeddings, backward FlairEmbeddings('multi-backward-fast'), ] # embedding stack consists of Flair and GloVe embeddings embeddings = StackedEmbeddings(embeddings=embedding_types) # 5. initialize sequence tagger from flair.models import SequenceTagger tagger = SequenceTagger(hidden_size=256, embeddings=embeddings, tag_dictionary=tag_dictionary, tag_type=tag_type) # 6. initialize trainer from flair.trainers import ModelTrainer trainer = ModelTrainer(tagger, corpus) # 7. run training trainer.train('resources/taggers/ner-multi-fast', train_with_dev=True, max_epochs=150) ``` --- ### Cite Please cite the following papers when using this model. ``` @misc{akbik2019multilingual, title={Multilingual sequence labeling with one model}, author={Akbik, Alan and Bergmann, Tanja and Vollgraf, Roland} booktitle = {{NLDL} 2019, Northern Lights Deep Learning Workshop}, year = {2019} } ``` ``` @inproceedings{akbik2018coling, title={Contextual String Embeddings for Sequence Labeling}, author={Akbik, Alan and Blythe, Duncan and Vollgraf, Roland}, booktitle = {{COLING} 2018, 27th International Conference on Computational Linguistics}, pages = {1638--1649}, year = {2018} } ```