import dataclasses from typing import Any, Dict, Optional, Union import numpy as np import torch import torch.nn.functional as F import transformers from .ultravox_config import UltravoxConfig @dataclasses.dataclass class DataCollatorForSeq2SeqWithAudio(transformers.DataCollatorForSeq2Seq): # when enabled, the alt_input_ids, alt_attention_mask, and alt_labels fields are used for computing the KL loss in UltravoxModel include_alt_fields: bool = False def __call__(self, features, *args, **kwargs): audio_values = [f.pop("audio_values", None) for f in features] audio_lens = [f.pop("audio_lens", None) for f in features] if self.include_alt_fields: # these fields are hard-coded in the transformer data collator, so they need special handling before calling the super method alt_features = [ { "input_ids": f.pop("alt_input_ids"), "attention_mask": f.pop("alt_attention_mask"), "labels": f.pop("alt_labels"), } for f in features ] batch = super().__call__(features, *args, **kwargs) if self.include_alt_fields: alt_batch = super().__call__(alt_features, *args, **kwargs) batch["alt_input_ids"] = alt_batch["input_ids"] batch["alt_attention_mask"] = alt_batch["attention_mask"] batch["alt_labels"] = alt_batch["labels"] # Pad the last dimension of all audio_values to the same length, with 0s on the right. if audio_values and audio_values[0] is not None: max_len = max([x.shape[-1] for x in audio_values]) batch["audio_values"] = torch.cat( [F.pad(x, (0, max_len - x.shape[-1])) for x in audio_values] ) if self.tokenizer.padding_side == "left": input_ids_lens = torch.LongTensor( [f["input_ids"].shape[-1] for f in features] ) displacement = batch["input_ids"].shape[-1] - input_ids_lens batch["audio_token_start_idx"] += displacement.to( batch["audio_token_start_idx"].device ) # batch["audio_lens"].shape = (B,) batch["audio_lens"] = torch.cat(audio_lens) return batch class UltravoxProcessor(transformers.ProcessorMixin): """ Constructs an Ultravox processor which wraps an audio processor and a tokenizer into a single processor. Args: audio_processor: The audio processor for the audio encoder. tokenizer: The tokenizer for the language model. """ attributes = ["audio_processor", "tokenizer"] audio_processor_class = ( "Wav2Vec2Processor", "SeamlessM4TFeatureExtractor", "WhisperProcessor", ) tokenizer_class = ( "PreTrainedTokenizer", "PreTrainedTokenizerFast", ) tokenizer: transformers.PreTrainedTokenizerBase audio_processor: transformers.ProcessorMixin def __init__( self, audio_processor=None, tokenizer=None, audio_padding: str = "longest", encoder_ds_factor: int = 320, stack_factor: int = 8, audio_placeholder: str = "<|audio|>", # Defaults to whisper encoder context size audio_context_size: Optional[int] = 3000, ): """ Args: audio_processor: The audio processor for the audio encoder. tokenizer: The tokenizer for the language model. audio_padding: The padding strategy for the audio encoder. encoder_ds_factor: The downsample factor of the audio encoder. stack_factor: The factor by which the audio encoder output is stacked in the multimodal projector. audio_placeholder: The placeholder for the audio in the text. audio_context_size: The maximum number of frames that the audio encoder can handle. """ self.audio_padding = audio_padding self.encoder_ds_factor = encoder_ds_factor self.stack_factor = stack_factor self.audio_placeholder = audio_placeholder self.audio_token_replacement = tokenizer.eos_token self.audio_context_size = audio_context_size assert ( self.audio_token_replacement is not None ), "The tokenizer has no EOS token. Cannot recover." if tokenizer.pad_token_id is None: tokenizer.pad_token_id = tokenizer.eos_token_id super().__init__(audio_processor=audio_processor, tokenizer=tokenizer) @classmethod def from_pretrained(cls, pretrained_model_name_or_path: str, **kwargs): config: UltravoxConfig = transformers.AutoConfig.from_pretrained( pretrained_model_name_or_path, **kwargs ) audio_processor = transformers.AutoProcessor.from_pretrained( config.audio_model_id or config.audio_config._name_or_path or "facebook/wav2vec2-base-960h" ) tokenizer = transformers.AutoTokenizer.from_pretrained( pretrained_model_name_or_path, **kwargs ) tokenizer.padding_side = "left" tokenizer.pad_token = tokenizer.eos_token return cls( audio_processor=audio_processor, tokenizer=tokenizer, stack_factor=config.stack_factor, ) def _chunk_and_pad_audio(self, audio_values: torch.Tensor) -> Dict[str, Any]: """ Processes the audio tensor by chunking it according to the audio_context_size, padding the last chunk if needed, and returns a dictionary with updated audio data. Args: audio_values (torch.Tensor): A tensor of audio values (e.g., in B, D, T format). Returns: Dict[str, Any]: Dictionary with the following keys: - "audio_values": The concatenated audio tensor after chunking and padding. - "audio_lens": List of lengths (as torch.Tensor) for each chunk. - "audio_batch_size": A list with one integer representing the number of chunks. """ result: Dict[str, Any] = {} if self.audio_context_size and audio_values.shape[-1] > self.audio_context_size: audio_chunks = list( torch.split(audio_values, self.audio_context_size, dim=-1) ) valid_lengths = [chunk.shape[-1] for chunk in audio_chunks] result = { "audio_lens": [torch.as_tensor(length) for length in valid_lengths] } # Pad the last chunk to the full context length if needed. last_chunk = audio_chunks[-1] pad_size = self.audio_context_size - last_chunk.shape[-1] if pad_size > 0: audio_chunks[-1] = F.pad(last_chunk, (0, pad_size)) else: audio_chunks = [audio_values] result = {"audio_lens": [torch.as_tensor(audio_values.shape[-1])]} result["audio_values"] = torch.cat(audio_chunks) result["audio_batch_size"] = [result["audio_values"].shape[0]] return result def __call__( self, text: Optional[str] = None, audio: Optional[Union[np.ndarray, torch.Tensor]] = None, sampling_rate: Optional[int] = None, return_tensors: Optional[ Union[str, transformers.TensorType] ] = transformers.TensorType.PYTORCH, **kwargs, ) -> transformers.BatchFeature: """ Main method to prepare for the model one text sequence and audio. This method forwards the `text` and `kwargs` arguments to PreTrainedTokenizerFast's [`~PreTrainedTokenizerFast.__call__`] if `text` is not `None` to encode the text. To prepare the audio(s), this method forwards the `audio`, `sampling_rate` and `kwargs` arguments to audio processor's [`~Wav2Vec2Processor.__call__`] if `audio` is not `None`. Please refer to the docstring of the above two methods for more information. Args: text (`str`, `List[str]`): The sequence to be encoded. Sequence can be a string or (pretokenized string). audio (`np.ndarray`, `torch.Tensor`, `List[np.ndarray]`, `List[torch.Tensor]`): The audio to be prepared. Audio can be NumPy array or PyTorch tensor. In case of a NumPy array/PyTorch tensor, each audio should be of shape (C, T), where C is a number of channels, and T the sample length of the audio. sampling_rate (`int`, *optional*, defaults to 16000): Sampling rate of the input audio. We expect 16kHz audio. Don't change this value unless you know what you are doing. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors of a particular framework. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return NumPy `np.ndarray` objects. - `'jax'`: Return JAX `jnp.ndarray` objects. Returns: [`BatchFeature`]: A [`BatchFeature`] with the following fields: - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`. - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not `None`). - **audio_values** -- Processed audio values to be fed to a model. Returned when `audio` is not `None`. - **audio_token_len** -- Predicted number of audio frames: this value is guaranteed to be a close upper bound. Returned when `audio` is not `None`. - **audio_token_start_idx** -- The index in the tokenized text where the audio starts. Returned when `audio` is not `None`. """ # TODO: Add support for multiple audio and text inputs. data: Dict[str, Any] = {} audio_embed_frames = 0 if audio is not None and len(audio) > 0: audio_len = audio.shape[-1] # It's guaranteed that the number of frames is less than or equal to this amount. # For Whisper this is exact AFAICT, but for Wav2Vec2 it's an upper bound. # Currently, StackAudioFrames makes sure an over-estimation won't cause issues by padding the audio embeddings. nb_encoder_frames = int(round(audio_len / self.encoder_ds_factor + 1e-4)) audio_embed_frames = int(np.ceil(nb_encoder_frames / self.stack_factor)) data["audio_token_len"] = [audio_embed_frames] # Main audio processing. The processor is model-specific. x = self.audio_processor( audio, sampling_rate=sampling_rate, padding="longest", max_length=audio_len, # The whisper audio_processor can handle audio lengths longer than 30 seconds return_attention_mask=True, **kwargs, ) if "input_features" in x: audio_values = x.input_features else: audio_values = x.input_values audio_values = torch.tensor(audio_values) chunk_and_pad_results = self._chunk_and_pad_audio(audio_values) data["audio_values"] = chunk_and_pad_results["audio_values"] data["audio_lens"] = chunk_and_pad_results["audio_lens"] data["audio_batch_size"] = chunk_and_pad_results["audio_batch_size"] if text is not None: assert isinstance( text, str ), "Text must be a string. Batch mode not supported yet." if self.audio_placeholder in text: if "audio_token_len" not in data: raise ValueError( f"audio must be provided when using audio placeholder ({self.audio_placeholder}) in text." ) start_idx = len( self.tokenizer.encode( text[: text.index(self.audio_placeholder)], add_special_tokens=False, ) ) data["audio_token_start_idx"] = [start_idx] # Replace the audio placeholder with the audio token. # e.g. "Transcribe\n<|audio|>" -> "Transcribe\n" # where the number of is the number of audio frames. text = text.replace( self.audio_placeholder, self.audio_token_replacement * audio_embed_frames, ) # Special tokens like BOS should already have been added by the caller. data.update(self.tokenizer([text], add_special_tokens=False, **kwargs)) return transformers.BatchFeature(data=data, tensor_type=return_tensors) def batch_decode(self, *args, **kwargs): return self.tokenizer.batch_decode(*args, **kwargs) def decode(self, *args, **kwargs): return self.tokenizer.decode(*args, **kwargs) @property def model_input_names(self): tokenizer_input_names = self.tokenizer.model_input_names audio_processor_input_names = self.audio_processor.model_input_names return list(set(tokenizer_input_names + audio_processor_input_names)) UltravoxProcessor.register_for_auto_class() transformers.AutoProcessor.register(UltravoxConfig, UltravoxProcessor)