# @title Model Tokenizer from transformers import BertTokenizerFast import os import tensorflow as tf class MiniSunTokenizer: def __init__(self, vocab_file=None): if vocab_file: self.tokenizer = BertTokenizerFast(vocab_file=vocab_file, do_lower_case=False) else: self.tokenizer = BertTokenizerFast.from_pretrained('bert-base-uncased') # Define special tokens self.pad_token = '[PAD]' self.unk_token = '[UNK]' self.cls_token = '[CLS]' self.sep_token = '[SEP]' self.mask_token = '[MASK]' self.eos_token = '[EOS]' def encode(self, text, max_length=512, padding=True, truncation=True): """ Encodes the input text (string or batch of strings). It automatically detects if the input is a batch or a single sentence. """ if isinstance(text, list): # If batch of texts, call batch_encode_plus return self._encode_batch(text, max_length, padding, truncation) else: # Single text input return self._encode_single(text, max_length, padding, truncation) def _encode_single(self, text, max_length=512, padding=True, truncation=True): # Encode a single string encoded = self.tokenizer.encode_plus( text, add_special_tokens=True, max_length=max_length, padding='max_length' if padding else False, truncation=truncation, return_attention_mask=True, return_tensors='np' ) return { 'input_ids': encoded['input_ids'], 'attention_mask': encoded['attention_mask'] } def _encode_batch(self, texts, max_length=512, padding=True, truncation=True): # Encode a batch of strings encoded_batch = self.tokenizer.batch_encode_plus( texts, add_special_tokens=True, max_length=max_length, padding='max_length' if padding else False, truncation=truncation, return_attention_mask=True, return_tensors='np' ) return { 'input_ids': encoded_batch['input_ids'], 'attention_mask': encoded_batch['attention_mask'] } def decode(self, token_ids): # Decodes token IDs back into text return self.tokenizer.decode(token_ids, skip_special_tokens=True) def save_pretrained(self, save_directory): # Save the tokenizer in Hugging Face format os.makedirs(save_directory, exist_ok=True) self.tokenizer.save_pretrained(save_directory) def __call__(self, text, *args, **kwargs): """ This allows the tokenizer object to be called directly like `tokenizer(text)`. It will automatically detect if the input is a batch or a single sentence. """ return self.encode(text, *args, **kwargs) # Example usage of the tokenizer tokenizer = MiniSunTokenizer()