--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: albert_model results: [] --- # albert_model This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8674 - Accuracy: 0.9010 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 334 | 0.3206 | 0.8666 | | 0.4327 | 2.0 | 668 | 0.4502 | 0.8906 | | 0.3178 | 3.0 | 1002 | 0.4517 | 0.8951 | | 0.3178 | 4.0 | 1336 | 0.5688 | 0.9025 | | 0.1649 | 5.0 | 1670 | 0.6359 | 0.8996 | | 0.0707 | 6.0 | 2004 | 0.7573 | 0.8906 | | 0.0707 | 7.0 | 2338 | 0.8200 | 0.8906 | | 0.0216 | 8.0 | 2672 | 0.7581 | 0.9010 | | 0.0168 | 9.0 | 3006 | 0.7530 | 0.9130 | | 0.0168 | 10.0 | 3340 | 0.8194 | 0.9055 | | 0.0075 | 11.0 | 3674 | 0.8633 | 0.9010 | | 0.0037 | 12.0 | 4008 | 0.8079 | 0.9145 | | 0.0037 | 13.0 | 4342 | 0.8283 | 0.9115 | | 0.0018 | 14.0 | 4676 | 0.8508 | 0.9055 | | 0.0003 | 15.0 | 5010 | 0.8674 | 0.9010 | ### Framework versions - Transformers 4.29.2 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3