--- tags: - autotrain - text-classification language: - unk widget: - text: "I love AutoTrain 🤗" datasets: - feralvam/autotrain-data-rustance-stance-xlmr co2_eq_emissions: emissions: 2.3986554105301314 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 2440275732 - CO2 Emissions (in grams): 2.3987 ## Validation Metrics - Loss: 0.466 - Accuracy: 0.861 - Macro F1: 0.455 - Micro F1: 0.861 - Weighted F1: 0.809 - Macro Precision: 0.425 - Micro Precision: 0.861 - Weighted Precision: 0.764 - Macro Recall: 0.491 - Micro Recall: 0.861 - Weighted Recall: 0.861 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/feralvam/autotrain-rustance-stance-xlmr-2440275732 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("feralvam/autotrain-rustance-stance-xlmr-2440275732", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("feralvam/autotrain-rustance-stance-xlmr-2440275732", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```