--- license: mit library_name: peft tags: - generated_from_trainer metrics: - precision - recall - accuracy base_model: roberta-large model-index: - name: roberta-large-lora-token-classification results: [] --- # roberta-large-lora-token-classification This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4877 - Precision: 0.8557 - Recall: 0.6375 - F1-score: 0.7306 - Accuracy: 0.7991 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1-score | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:--------:|:--------:| | 0.656 | 1.0 | 762 | 0.6091 | 0.5121 | 0.9432 | 0.6638 | 0.5916 | | 0.5514 | 2.0 | 1524 | 0.6414 | 0.5205 | 0.9370 | 0.6692 | 0.6041 | | 0.5584 | 3.0 | 2286 | 0.4862 | 0.7271 | 0.7696 | 0.7478 | 0.7781 | | 0.5467 | 4.0 | 3048 | 0.4781 | 0.8197 | 0.6912 | 0.7500 | 0.8030 | | 0.5519 | 5.0 | 3810 | 0.4877 | 0.8557 | 0.6375 | 0.7306 | 0.7991 | ### Framework versions - PEFT 0.9.0 - Transformers 4.38.1 - Pytorch 2.1.0+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2